153 resultados para ELECTROOSMOTIC FLOW
Resumo:
Monolithic columns of capillary electrochromatography (CEC) with weak electroosmotic flow (EOF) have been prepared by in situ polymerization of butyl methacrylate and ethylene dimethacrylate, without any charged groups in the reaction mixture. The reproducibility of such columns has been proved good no matter whether they are prepared in the same batch or in different batches. In the case of BMA-EDMA monoliths, besides the traditional ternary mixture - 1-propanol, 1,4-butanediol, and water, binary porogenic solvents with only alcohols have also been adopted. Compared with ternary porogenic solvents, the design with binary ones allows for fine control of the pore diameter and the formation of the specific surface of the monolithic polymers. The composition of porogenic reagents has also been shown to have an effect on EOF in the column systems. In addition, the Joule heat effect in such columns has been studied by varying the inner diameter of columns. Through the separation of acidic compounds, monolithic columns with low EOF have shown potential in the analysis of charged samples.
Resumo:
A theoretical study on the velocity of electroosmotic flow (EOF) and the retention times of neutral solutes under multiple-step gradient of capillary electrochromatography (CEC) was carried out, focusing on that with three kinds of mobile phases. Through the model computations, the detaining time of the second kind of mobile phase in the column was proved to play an important role in affecting EOF. The variation speed of EOF was shown to be determined by the differences among dead times in different steps. In addition, the prediction of the retention times of 13 aromatic compounds under gradient mode was performed with the deduced equations. A relative error below 3.3% between the calculated and experimental values was obtained, which demonstrated the rationality of the theoretical deduction. Our study could not only improve the comprehension of stepwise gradient elution, but also be of significance for the further optimization of separation conditions in the analysis of complex samples.
Resumo:
Manipulation of electroosmotic flow in capillary electrophoresis is an important step for separation of inorganic anions. The type. and concentration of electroosmotic flow modifier (OFM) exert a tremendous influence on the electroosmotic mobility. In the presence of CTAB as buffer solutions' pH values increase, the electroosmotic mobility becomes lower. At the same ionic strength, the buffer type affects the electroosmotic velocity and the migration order for iodide and iodate.
Resumo:
Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.
Resumo:
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm(2) s(-1) V-1 at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycylic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values.
Resumo:
A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82 300 and 38 800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of traps-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111 100 and 107 400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.
Resumo:
The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.
Resumo:
An apparatus including a rotary-type injector was designed for quantitative sample injection in capillary electrophoresis (CE), in which both pressurized flow and electroosmotic flow were used to drive the background electrolyte solution. A relative standard deviation of peak area of lower than 1% was achieved by using this apparatus. The effects of back-pressure regulator, restrictor, and applied voltage on separation efficiency and resolution were investigated. The utility of this apparatus in both micro-HPLC and pressurized capillary electrochromatography (pCEC) was also demonstrated.
Resumo:
A pressurized electrochromatography (pCEC) instrument with gradient capability was used in this work for separation of peptides. Three separation modes, namely, pCEC, high-performance liquid chromatography and capillary electrophoresis can be carried out with the instrument. In pCEC mode, the mobile phase is driven by both electroosmotic flow and pressurized flow, facilitating fine-tuning in selectivity of neutral and charged species. A continuous gradient elution can be carried out conveniently on this instrument, which demonstrates that it is more powerful than isocratic pCEC for separation of complicated samples. The effects of applied voltage, supplementary pressure and ion-pairing agents on separation of peptides in gradient pCEC were investigated. The effects of flow-rate of the pump and the volume of the mixer on resolution were also evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) was on-line hyphenated by a dialysis interface to achieve a 2D capillary electrophoresis (CE) system. The system was used with just one high-voltage power supply and three electrodes (one cathode shared by the two dimensions). The focused zone in the first dimension (i.e. the cIEF) was driven to the dialysis interface by electroosmotic flow (EOF), besides chemical mobilization from the first anode to the shared cathode. And then in the second dimension (i.e. the CZE), the separated zone was further separated and driven by an inverted EOF, which originated from the charged layer of a cationic surfactant adsorbed onto the inner wall of the capillary. Finally, a solution of ribonuclease was rapidly separated to assess the feasibility of the two-dimensional CE implement. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Characteristics of electroosmotic flow (EOF) and the migration of neutral solutes under double stepwise gradient elution in capillary electrochromatography were studied systematically. EOF velocity proved to be the function of operation time changing with the introduction of the second mobile phase. Accordingly, the retention of components also changed. The migration of neutral solutes was studied under the following three situations; A, components eluted when the column was filled only with the first kind of mobile phase; B, solutes eluted still in the first kind of mobile phase while at that time two kinds of mobile phase coexisted in the column and C, samples eluted in the second kind of mobile phase. Equations to describe the retention times of components under these three kinds of conditions were deduced and applied to predict the retention times of 12 aromatic compounds. Relative errors between experimental and calculated values were below 5.0%, which proved the reliability of the equations. In addition, parameters that might affect the retention time of solutes, such as the transferring time of mobile phase vials, the capacity factors of components and EOF velocities two steps were studied systematically (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were applied to study the interaction between netropsin and a 14mer double-stranded DNA (dsDNA). The use of a polyacrylamide coated capillary can suppress the electroosmotic flow (EOF) and the adsorption of DNA onto the wall. Better analysis of the DNA was achieved in a coated capillary upon Tris-acetate. In CZE, the peak width broadened due to the affinity interaction between dsDNA and netropsin. In ACE, o-toluic acid, a negatively charged molecule was used as the indicator to monitor the changes of EOF when netropsin was added to the running buffer. The 14mer dsDNA showed different mobilities upon various concentrations of netropsin due to the affinity interaction between the dsDNA and netropsin. The binding constants of this interaction were (1.07 +/- 0.10) . 10(5) M-1 calculated from CZE and (4.75 +/- 0.30) . 10(4) M-1 from ACE using a Scatchard plot. The binding stoichiometry was 1:1 calculated from CZE which was superior to ACE in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Herein, one water-soluble functionalized ionic liquid (IL), 1-butyl-3-methylimidazolium dodecanesulfonate (BAS), was designed, investigated and successfully applied to microchip micellar electrokinetic chromatography (MEKC) construction. It possessed the properties of both IL and surfactant. A fairly stable pH value similar to 7.4, which was fit to pH values of general biological buffers, was nicely placed at the optimum concentration of 20 mM BAS solution. While applying BAS solution as running buffer in poly(dimethylsiloxane) (PDMS) microfluidic systems, significantly enhanced electroosmotic flow (8-fold) and resolutions between analytes were obtained than that using other supporting electrolytes or surfactants.