342 resultados para Dot probe
Resumo:
Relapse has been a great challenge in clinical treatment and experimental studies of drug addiction. Recent studies suggest that psychological dependence may play a major role in addiction relapse, even more important than physiological dependence. Then a fundamental question arises: how to measure the psychological dependence? How to examine whether an addict has psychologically quitted when leaving drug rehabilitation centers? Self-report, a commonly used evaluation approach, is inevitably vulnerable to various cognitive influences, particularly in explicit tasks. Therefore, an objective index is necessary to evaluate the subliminal psychological drug dependence level. The objective of the current study was to develop such a psychological paradigm to probe the unaware attentional bias of in smoking addicts. Experiment 1 adapted the interocular suppression technique of binocular rivalry to study the attentional bias to cigarette pictures in smokers and age-matched nonsmoker. Results show that the smokers demonstrated similar attentional bias in both visible and unaware conditions, while non-smokers showed attentional bias only in the visible condition, and there was a significant interaction between experiment conditions and subject groups. These results provide compelling evidence for addiction-specific attentional bias in cigarette smokers, by minimizing the influence of confounding conscious factors. Furthermore, attentional bias of smokers in unawareness state was negatively correlated with their cigarette dependence levels, while their pre-test cigarette craving levels was positively correlated with their attnetional bias in the visible condition. This pair of correlations further demonstrated the advantages of unawareness state in disclosing stable dependence states, therefore supporting the effectiveness of the paradigm used in this study. Another interesting finding of Experiment 1 is that non-smokers also showed attentional bias in the visible condition. To exclude the possibility that the attentional bias found in experiment 1 was task-specific, experiment 2 adapted the most commonly-used visual dot probe task with smoking scenes as in relevant reference. The result in experiment 1 was well replicated, i.e., nonsmokers in experiment 2 also showed significant attentional bias to smoking-related stimuli, We interpenetrate this interesting finding as an effect of environmental influence, as the participants of the current study live in a highly smoking-exposed and smoking-encouraged environment, which is quite different with the participants of studies reported in the literature. A series of questionnaires and scales administered in the current study indeed show that most smokers smoked due to influence of the environment. They also acknowledged that smoking as an important media of social communication in China, and even considered that away from the smoking environment would effectively help them to quit. The current study also found that the disgust level towards cigarette pictures and smoking-related scenes of non-smokers was positively correlated with their attnentional bias in the visible condition of experiment 1. It is likely that in a highly smoking-encouraged environment, the remaining few on-smokers have severe disgust to cigarettes and smoking scenes; and their attentional bias might be caused by disgust avoidance. In conclusion, the current study represents the first study showing the existence of unaware attentional bias to smoking related stimuli in cigarette smokers by applying the interocular suppression paradigm, providing a reference to study of dependence of other drugs. The current study also found that our non-smoking participants also showed attentional bias to smoking related stimuli, which may be due to the possible influence of highly smoking-exposed environment of our participants.
Resumo:
A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.
Resumo:
Transport in a semiopen Kondo- correlated quantum dot is mediated through more than one quantum state. Using the Keldysh technique and the equation of motion method, we study the shot noise S for a wide range of source- drain voltages V-sd within a model incorporating the additional states as a background continuum, demonstrating the importance of the Fano interference. In the absence of the interference, the noise is revealed to be a probe of the second moment of the local density of states, and our theory reproduces the well- known peak structure around the Kondo temperature in the S-V-sd curve. More significantly, it is found that taking account of the background transmission, the voltage dependence of the noise exhibits rich peak- dip line shapes, indicating the presence of the Fano effect. We further demonstrate that due to its two- particle nature, the noise is more sensitive to the quantum interference effect than the simple current.
Resumo:
Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.
Resumo:
A manganese molybdenum phosphate, (NH3CH2CH2NH3)(10)(H3O)(3)(H5O)Na-2[MnMo12O24(OH)(6) (PO4)(4)(PO3OH)(4)][MnMo12O24 (OH)(6)(PO4)(6)(PO3OH)(2)]. 9H(2)O, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The structure of this compound may be considered to be two [Mo6O12(OH)(3)(PO4)(2)(HPO4)(2)](7-) units bonded together by a manganese atom, although several P-O groups are not protonated on account of coordination to a Na+ cation. One-dimensional tunnels were formed in the solid. A probe reaction of the oxidation of acetaldehyde with H2O2 using this compound as catalyst was carried out in a liquid-solid system, showing that the manganese molybdenum phosphate has high catalytic activity in the reaction.
Resumo:
A nickel molybdenum phosphate, (NH3CH2CH2NH3)(4).(NH3CH2CH2NH2). Na .[Ni2Mo12O30(PO4)(HPO4)(4)(H2PO4)(3)]. 6H(2)O, invoicing molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12,011(2), b = 14,612(3), c = 21.252(4) Angstrom, alpha = 80.54(2)degrees, beta = 83.10(2)degrees, gamma = 76.29(2)degrees, V = 3561.4(12) Angstrom(3), Z = 2, lambda(MoK alpha) = 0.71073 Angstrom (R(F) = 0.0529 for 9880 reflections), Data mere collected on a Siemens P4 diffractometer at 20 degrees C in the range of 1.75 degrees < theta < 23.02 degrees using the omega-scan technique. The structure was solved by direct methods using the program SHELXTL-93 and refined with the method of fun-matrix least-squares on F-2. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded together with a nickel atom, although several P-O groups are not protonated on account of coordination with a Na+ cation, The one-dimensional tunnels were formed in the solid of the title compound. A probe reaction of the oxidation of acetaldehyde with H2O2 using the title compound as catalyst was carried out in a liquid- solid system, showing that the title compound had high catalytic activity in the reaction, (C) 1999 Academic Press.
Resumo:
A new ferric molybdenum phosphate containing a tunnel structure and crystallographically different clusters has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. A probe reaction of the oxidation of acetaldehyde with H2O2 using the tide compound as catalyst was carried out in a liquid-solid system, showing that the title compound had high catalytic activity in the reaction. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A new crystal of aluminophosphate, AIPO(4)(.)H(2)O, is synthesized from two-batch aqueous solution under hydrothermal conditions. Three types of the crystal habits, i.e. the tetragonal double pyramid, the tetragonal prism and the plate-type tetragonal prism, are found from batch-A solution. Two types of the crystal habits, i.e. the hexagonal pyramid and the strip-type tetragonal prism, are found from batch-B solution. The change of crystal morphology is originated from the fluctuation of the synthesis conditions, such as the supersaturation, the temperature and the impurity content. It causes change of the step energies, the defect density and the step roughness, and further, change of the growth rates. Since the crystal morphology is sensitive to the mass transport mechanism, the crystal habits could be changed under the microgravity.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
A probe utilizing the bipolar pulse method to measure the density of a conducting fluid has been developed. The probe is specially designed such that the concentration of a stream tube can be sampled continuously. The density was determined indirectly from the measurement of solution conductivity. The probe was calibrated using standard NaCl solutions of varying molarity and was able to rapidly determine the density of a fluid with continuously varying conductance. Measurements of the conductivity profiles, corresponding density profiles, and their fluctuation levels are demonstrated in a channel flow with an electrolyte injected from a slot in one wall.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.