123 resultados para Dimensional analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide an overview of the basic concepts of scaling and dimensional analysis, followed by a review of some of the recent work on applying these concepts to modeling instrumented indentation measurements. Specifically, we examine conical and pyramidal indentation in elastic-plastic solids with power-law work-hardening, in power-law creep solids, and in linear viscoelastic materials. We show that the scaling approach to indentation modeling provides new insights into several basic questions in instrumented indentation, including, what information is contained in the indentation load-displacement curves? How does hardness depend on the mechanical properties and indenter geometry? What are the factors determining piling-up and sinking-in of surface profiles around indents? Can stress-strain relationships be obtained from indentation load-displacement curves? How to measure time dependent mechanical properties from indentation? How to detect or confirm indentation size effects? The scaling approach also helps organize knowledge and provides a framework for bridging micro- and macroscales. We hope that this review will accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to materials scientists and engineers, and (2) providing a better understanding of instrumented indentation measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

海底管道涡激振动和管道周围海床冲刷是海流--管道--海床之间复杂的动力耦合问题.文章应用量纲分析方法对海流、管道与海床之间的动力耦合作用进行了分析,确定了在实验模拟中应遵循的相似准则.在此基础上,研制了一套能模拟海流、海床与海底管道之间相互作用的实验模拟装置.初步实验结果表明文中研制的实验模拟装置能够模拟典型海洋环境下海底管道的涡激振动和管道周围海床冲刷等问题.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For an orthotropic laminate, an equivalent system with doubly cyclic periodicity is introduced. Then a 3-dimensional finite element model for the equivalent system is transformed into the unitary space, where the large finite element matrix equation is decoupled into some small matrix equations. Such a decoupling very efficiently reduces the computational effort. For an orthotropic laminate with four clamped edges, no exact elasticity solution is available, and the deflection values predicted by different methods have a considerable difference each other for a small length-to-thickness ratio. The present predictions are the largest because the present method is a full 3-dimensional finite element analysis without superfluous constraints. Illustrative numerical examples are presented to observe the distributions of stresses through the thickness of the laminates. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional analysis gives quite satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using dimensional analysis and finite-element calculations we determine the functional form of indentation loading curves for a rigid conical indenter indenting into elastic-perfectly plastic solids. The new results are compared with the existing theories of indentation using conical indenters, including the slip-line theory for rigid-plastic solids, Sneddon's result for elastic solids, and Johnson's model for elastic-perfectly plastic solids. In the limit of small ratio of yield strength (Y) to Young's modulus (E), both the new results and Johnson's model approach that predicted by slip-line theory for rigid-plastic solids. In the limit of large Y/E, the new results agree with that for elastic solids. For a wide range of Y/E, some difference is found between Johnson's model-and the present result. This study also demonstrates the possibilities and limitations of using indentation loading curves to extract fundamental mechanical properties of solids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Size effects of mechanical behaviors of materials are referred to the variation of the mechanical behavior due to the sample sizes changing from macroscale to micro-/nanoscales. At the micro-/nanoscale, since sample has a relatively high specific surface area (SSA) (ratio of surface area to volume), the surface although it is often neglected at the macroscale, becomes prominent in governing the energy effect, although it is often neglected at the macroscale, becomes prominent in governing the mechanical behavior. In the present research, a continuum model considering the surface energy effect is developed through introducing the surface energy to total potential energy. Simultaneously, a corresponding finite element method is developed. The model is used to analyze the axial equilibrium strain problem for a Cu nanowire at the external loading-free state. As another application of the model, from dimensional analysis, the size effects of uniform compression tests on the microscale cylinder specimens for Ni and Au single crystals are analyzed and compared with experiments in literatures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive, using dimensional analysis and finite element calculations, several scaling relationships for conical indentation in elastic-plastic solids with work hardening. Using these scaling relationships, we examine the relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids. The scaling relationships also provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They may also be helpful as a guide to numerical and finite element calculations of indentation problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use dimensional analysis to derive scaling relationships for self-similar indenters indenting solids that exhibit power-law creep. We identify the parameter that represents the indentation strain rate. The scaling relationships are applied to several types of indentation creep experiment with constant displacement rate, constant loading rate or constant ratio of loading rate over load. The predictions compare favourably with experimental observations reported in the literature. Finally, a connection is found between creep and 'indentation-size effect' (i.e. changing hardness with indentation depth or load).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many structural bifurcation buckling problems exhibit a scaling or power law property. Dimensional analysis is used to analyze the general scaling property. The concept of a new dimensionless number, the response number-Rn, suggested by the present author for the dynamic plastic response and failure of beams, plates and so on, subjected to large dynamic loading, is generalized in this paper to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. Structural bifurcation buckling can be considered when Rn(n) reaches a critical value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using dimensional analysis and finite element calculation, we studied spherical indentation in elastic-plastic solids with work hardening. We report two previously unknown relationships between hardness, reduced modulus, indentation depth, indenter radius, and work of indentation. These relationships, together with the relationship between initial unloading stiffness and reduced modulus, provide an energy-based method for determining contact area, reduced modulus, and hardness of materials from instrumented spherical indentation measurements. This method also provides a means for calibrating the effective radius of imperfectly shaped spherical indenters. Finally, the method is applied to the analysis of instrumented spherical indentation experiments on copper, aluminum, tungsten, and fused silica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using dimensional analysis and finite element calculations, we derive simple scaling relationships for loading and unloading curve, contact depth, and hardness. The relationship between hardness and the basic mechanical properties of solids, such as Young's modulus, initial yield strength, and work-hardening exponent, is then obtained. The conditions for 'piling-up' and 'sinking-in' of surface profiles during indentation are determined. A method for estimating contact depth from initial unloading slope is examined. The work done during indentation is also studied. A relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work is discovered. This relationship offers a new method for obtaining hardness and elastic modulus. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and 'indentation size effect' is established.