52 resultados para DUPLICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptation is one of the most fundamental issues in the studies of organismal evolution. Pancreatic ribonuclease is a very important digestive enzyme and secreted by the pancreas. Numerous studies have suggested that RNASE1 gene duplication is closely related to the functional adaptation of the digestive system in the intestinal fermentation herbivores. RNASE1 gene thus becomes one of the most important candidate genetic markers to study the molecular mechanism of adaptation of organisms to the feeding habit. Interestingly, RNASE1 gene duplication has also been found in some non-intestinal fermentation mammals, suggesting that RNASE1 gene may have produced novel tissue specificity or functions in these species. In this review, RNASE1 gene and its implications in adaptive evolution, especially in association with the feeding habit of organisms, are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes(1-4). Despite their seeming reversibi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates) is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results: Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins), which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions: Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple type I interferons (IFNs) have recently been identified in salmonids, containing two or four conserved cysteines. In this work, a novel two-cysteine containing (2C) IFN gene was identified in rainbow trout. This novel trout IFN gene (termed IFN5) formed a phylogenetic group that is distinct from the other three salmonid IFN groups sequenced to date and had a close evolutionary relationship with IFNs from advanced fish species. Our data demonstrate that two subgroups are apparent within each of the 2C and 4C type I IFNs, an evolutionary outcome possibly due to two rounds of genome duplication events that have occurred within teleosts. We have examined gene expression of the trout 2C type I IFN in cultured cells following stimulation with lipopolysaccharide, phytohaemagglutinin, polyI:C or recombinant IFN, or after transfection with polyI:C. The kinetics of gene expression was also studied after viral infection. Analysis of the regulatory elements in the IFN promoter region predicted several binding sites for key transcription factors that potentially play an important role in mediating IFN5 gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-1 beta (IL-1 beta) is one of the pivotal early response pro-inflammatory cytokines that enables organisms to respond to infection and induces a cascade of reactions leading to inflammation. In spite of its importance and two decades of studies in the mammalian species, genes encoding IL-1 beta were not identified from non-mammalian species until recently. Recent research, particularly with genomic approaches, has led to sequencing of IL-1 beta from many species. Clinical studies also Suggested IL-1 beta as an immunoreagulatory molecule potentially useful for enhancing vaccination. However, no IL-1 beta genes have been identified from channel catfish, the primary aquaculture species from the United States. In this study, we identified two distinct cDNAs encoding catfish IL-1 beta. Their encoding genes were identified, sequenced, and characterized. The catfish IL-1 beta genes were assigned to bacterial artificial chromosome (BAC) clones. Genomic studies indicated that the IL-1 beta genes were tandemly duplicated on the same chromosome. Phylogenetic analysis of various IL-1 beta genes indicated the possibility of recent species-specific gene duplications in channel catfish, and perhaps also in swine and carp. Expression analysis indicated that both IL-1 beta genes were expressed, but exhibited distinct expression profiles in various catfish tissues, and after bacterial infection with Edwardsiella ictaluri. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.