165 resultados para DNA-organic hybrid materials, polymer colloidsm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a simple and effective supramolecular route for facile synthesis of submicrometer-scale, hierarchically self-assembled spherical colloidal particles of adenine - gold(III) hybrid materials at room temperature. Simple mixture of the precursor aqueous solutions of adenine and HAuCl4 at room temperature could result in spontaneous formation of the hybrid colloidal particles. Optimization of the experimental conditions could yield uniform-sized, self-assembled products at 1:4 molar ration of adenine to HAuCl4. Transmission electron microscopy results reveal the formation of hierarchical self-assembled structure of the as-prepared colloidal particles. Concentration dependence, ratio dependence, time dependence, and kinetic measurements have been investigated. Moreover, spectroscopic evidence [i.e., Fourier transform infrared (FTIR) and UV-vis spectra and wide-angle X-ray scattering data] of the interaction motives causing the formation of the colloidal particles is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3). phen: where HTTA = 1-(2-thenoyl)-3,3,3-trifluoracetone and phen = 1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate or ethyl methacrylate, the inorganic/polymer hybrid materials containing Eu(TTA)(3). phen have also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)3 phen. (C) 2000 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid materials of polyacrylamide networks and gold nanoparticles were prepared by directly heating an aqueous solution containing HAuCl4, acrylamide, N,N'-methylenebisacrylamide, and sodium sulfite (Na2SO3). Acrylamide, N,N'-methylenebisacrylamide, and Na2SO3 were used as monomers, crosslinking agent, and initiator, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A urea-based bis-silylated bipyridine ligand derived from 4,4'-diamino-2,2'-bipyridine has been prepared. Organic-inorganic hybrid materials with a high loading of lanthanide 2,2-bipyridine moieties were obtained by using the silylated bipyridine as the only siloxane network precursor in the presence of lanthanide ions (or lanthanide complexes). The in-situ formation of lanthanide complexes from lanthanide ions and the silylated bipyridine during the sol-gel processing was confirmed by the luminescence behavior of the obtained hybrid materials and that of the corresponding pure lanthanide complex [Ln(bpy)(2)Cl-3 center dot 2H(2)O].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 degrees C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(-6) S/cm. (c) 2007 Li Qi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, silica-based transparent organic-inorganic hybrid materials were prepared via the sol-gel process. Tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) were used as the inorganic and organic precursors, respectively. The terbium complex, Tb(Tfacac)(3)phen (Tfacac = 1,1,1-trifluoroacetylacetone, phen = 1, 10-phenanthroline) was successfully doped into organically modified silicate (ormosil) matrix derived from TEOS and GPTMS, and the luminescent properties of the resultant ormosil composite phosphors [ormosil/Th(Tfacac)(3)phen] were investigated compared with those of the Tb(Tfacac)(3)phen incorporated into SiO2 derived from TEOS (labeled as silica/Tb(Tfacac)(3)phen). Both kinds of the materials show the characteristic green emission of Tb3+ ion. The luminescence behavior of the resultant composite products was dependent on the matrix composition. The optimized lanthanide complex concentration in the ormosil/Tb(Tfacac)(3)phen was increased compared with in silica/Tb(Tfacac)(3)phen. Furthermore, the lifetime of Tb3+ in Tb(Tfacac)(3)phen, silica/Tb(Tfacac)(3)phen and ormosil/Tb(Tfacac)(3)phen follows the sequence: onmosil/Tb(Tfacac)(3)phen>silica/Tb(Tfacac)(3)phen>pure Tb(Tfacac)(3)phen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New kinds of hybrid materials containing covalently bonded Eu3+ (Tb3+) bipyridine complexes in a silica network have been prepared and their luminescence properties reported.