238 resultados para Cyanex 302
Resumo:
本文系统研究了酸性单硫代磷酸萃取剂Cyanex302萃取抗、忆、斓和礼的单一体系热力学,钦、钻和饵的协同萃取热力学,抗、忆、斓和礼的动力学机理及其各种因素影响下的界面活性,在以下四个方面得到了具有学术意义和应用前景的结果。1.推导了Cyanex302萃取Sc(111),Y(111),La(111)和Gd(111)的平衡方程式,比较了Cyanex302与纯化后Cyanex302对稀土的萃取性能和分离选择性。以斓为例,深入探讨了Cyanex302中不同组份在萃取过程中的地位和作用,明确了cyanex302与TOPO混合对稀土元素萃取具有明显的协同效应,推测了纯化cyanex302与TOPO混合萃取悯的热力学机理,计算了协萃系数,确定了萃合物组成。2.探讨了Cyanex302与不同类型(酸性,中性和胺类)萃取剂混合对钦、钻、饵的萃取性能。比较了Cyanex302与不同类型萃取剂等物质的量混合后,对三种稀土元素萃取能力的强弱顺序和分离选择性顺序。明确cyanex302与不同类型萃取剂混合可以构成协萃和反协萃体系,计算了协萃体系的协萃系数。以cyanex302与CA-100萃取YCl3为例,推导了协萃机理,确定了协萃配合物的组成。3.借助于不同的数据处理方法研究了cyanex302萃取杭、钻、斓和锐的动力学,考察了各种因素对萃取速率的影响,获得不同方法下的速率方程,得出不同的萃取机理。比较了Cyanex302正向萃取和反萃取YCl_3的动力学方程,得出一些具有指导意义的结论。Vll4.用不同的数学处理方法研究了Cyanex302在没有离子强度维持下各种稀释剂对界面活性的影响,比较了各种数据处理方法下结论的不同,分析了不同稀释剂对Cyanex302界面活性影响的原因。重点讨论了CyaneX302-庚烷-(H,Na)Cl体系中温度、水相酸度和离子强度对界面活性的影响,把界面吸附与萃取动力学相结合,探讨了二者之间的关系。
Resumo:
The extraction and separation of Ho, Y, and Er(III) with the mixtures of bis(2,4,4-trimetylpentyl)monothiophosphinic acid (Cyanex 302) and another organic extractant, such as acidic organic extractant (di-2-ethylhexyl phosphoric acid P204, 2-ethythexyl phosphoric acid mono-2-ethylhexyl ester P507, di-2-ethylhexyl phosphinic acid P229, and sec-nonylphenoxy acetic acid CA-100), neutral organic extractant (tri-n-butyl phosphate TBP, di-(1-metylheptyl)metyl phosphate P350, and branched trialkylphosphinic oxide Cyanex 925) or primary amine N1923, has been investigated in this paper. The extractability and separation ability for the Ho, Y, and Er with the mixtures of Cyanex 302 and organic extractants has been compared. The synergistic effect of the Ho, Y, and Er extraction with the mixtures of Cyanex 302 and P229, Cyanex 925, CA-100, or N1923 has been explored and the synergistic enhancement coefficients have been calculated. At last, the Y3+ synergistic extraction with the mixtures of Cyanex 302 and CA-100 has been determined and the extracted complex has been deduced.
Resumo:
The extraction kinetics of Sc, Y, La and Gd(III) from the hydrochloric acid medium using Cyanex 302 (hereafter HL) in heptane solution have been measured by the constant interfacial cell with laminar flow. Reaction regions are explored at liquid-liquid interface. Extraction regimes are deduced to be diffusion-controlled for Sc(Ill) and mixed controlled for Y, La and Gd(Ill). Extraction mechanisms are discussed according to the dimeric model of Cyanex 302 in non-polar solution. From the temperature dependence of rate measurement, the values of E-a, Delta H-+/-, Delta S-+/- and Delta G(300)(+/-) are calculated and it is found that the absolute values of these parameters keep crescent trend for Sc, Y, La and Gd(III). At the same time, it is found that it can easily achieve the mutual separation among the Sc, Y and La(III) with kinetics extraction methods.
Resumo:
The solvent extraction of La3+ from hydrochloric acid solutions was investigated using his (2, 4, 4-trimethylpentyl) monothiophosphinic acid (Cyanex 302, HL) as an extractant. The effect of equilibrium of aqueous acidity on extraction of La3+ using Cyanex 302 In different diluents was discussed. The effects of extractant concentration and chloride ion on the extraction reaction were also studied. Stoichiometry of the extraction reactions and the nature of metal complexes formed were determined using slope analysis technique and IR measurement.
Resumo:
The extractions of the selected rare earths (Sc, Y, La and Gd) from hydrochloric acid solutions have been investigated using bis(2,4,4-trimethylpentyl)-mono thiophosphinic acid (Cyanex 302, HL) in heptane as an extractant. The results demonstrate that the extractions of rare earths occur via the following reaction: Sc(OH)(2+) + 2[(HL)(2)]((O)) double left right arrow [Sc(OH)L-2 (.) 2(HL)]((O)) + 2H(+) Y3+ + 3[(HL)(2)]((O)) double left right arrow [Y(HL2)(3)]((O)) + 3H(+) La(OH)(2)(+) + 3[(HL)(2)](O) double left right arrow [La(OH)(2)L (.) 5(HL)]((O)) + H+ Gd(OH)(2+) + 3[(HL)(2)]((O)) double left right arrow [Gd(OH)L-2 (.) 4(HL)]((O)) + 2H(+) The pH(1/2) values and equilibrium constants of the extracted complexes have been deduced by taking into account the aqueous phase complexation of the metal ion with hydroxyl ligands and plausible complexes extracted into the organic phase. According to the pH(1/2) values, it is possible to realize mutual separation among Sc(III), Y(III), La(III) and Gd(III) with Cyanex 302 by controlling aqueous acidity.
Resumo:
The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.
Resumo:
In this paper, the extractabilities of Cyanex 302 and purified Cyanex 302 (hereafter HBTMPTP or HA) in heptane have been compared by extracting the scandium, yttrium, lanthanum, and gadolinium from hydrochloric acid solutions. The roles of the different components in Cyanex 302 on lanthanum extraction have been analyzed. The result demonstrates that the Cyanex 302 has a higher extractability than HBTMPTP, which perhaps originates from the interaction among the components in Cyanex 302. Especially for R3PO, obviously synergistic effect can be observed in the lower pH range and extraction mechanism of lanthanum using the mixture of HBTMPTP and TOPO has been deduced to be:where (HA)(2) and B denote the dimeric form of HBTMPTP and TOPO, respectively. At the same time, the separation abilities of Cyanex 302 and HBTMPTP on the rare earth elements have been compared. Also, the effect of temperature on the extraction with Cyaenx 302, HBTMPTP and the mixture of HBTMPTP and TOPO has also been discussed with thermodynamic functions Delta H, Delta S, and Delta G calculated.
Resumo:
本论文共分六章,论文首先综述了近年稀土溶剂萃取最新出现的一些萃取体系及萃取方法,然后用溶剂萃取法系统研究了新萃取剂 PT-2 萃取稀土(III)、Cyanex 923 和 Cyanex 925 萃取铈(IV)、钍和稀土(III)的性质,推导层流型恒界面池的理论基础并用恒界面池法研究 Cyanex 272、PT-2 萃取稀土动力学,用高效离心分配色层仪(HPCPC) PT-2、Cyanex 302 和 Cyanex 272-P507 混合体系分离稀土(III)的规律,本论文还在大量实验数据的基础上,提出从氟碳铈矿中提取稀土的具有创新性的绿色工艺流程。论文第一章综述了近年衡土溶剂萃取的研究成果,为探求优于应用于工业生产的萃取稀土(III)的 P507 体系以及萃取钇的环烷酸体系,人们合成大量的有机磷类、羧酸类、苯胲类萃取剂并研究了它们萃取稀土的性能,将现有的萃取剂进行优化组合得到许多稀土的协同萃取体系,还将结晶反萃、还原反萃等方法应用于稀土分离过程。第二章用两相滴定法在测定 PT-2 的 K_d、K_2 等基本常数基础上,研究了 PT-2 的正庚烷溶液在盐酸、硝酸介质中萃取 15 个稀土离子(除了 Pm 外)的分配规律及萃取机理,同硫酸体系、高氯酸体系萃取平衡进行了对比,得到一些在理论上和实际上很有价值的结果。首次发现高位阻的酸性膦酸类萃取剂 PT-2 萃取轻、重稀土(III)时存在不同的机理,在盐酸、硝酸和硫酸体系中, PT-2 萃取轻稀土(III)为阳离子交换机理, PT-2 萃取重稀土时,阳离子交换机理和溶剂缔合机理共存;高氯酸介质中,由于高氯酸根离子难以同稀土(III)形成络合物, PT-2 萃取稀土(III)的机理符合一般的酸性膦酸酯的萃取规律,为阳离子交换机理。第三章探求了多种纯化 Cyanex 923 和 Cyanex 925 的途径,得出了较为行之有效的纯化方法,系统地研究了 Cyanex 923 从硫酸和硝酸介质中萃取 Ce(IV)、Th、La 和 Gd的规律,确定了萃合物的组成,计算了 lgK、ΔG、ΔH、ΔS 等热力学常数。 Cyanex 923 对 Ce(IV)、 Th(IV)的萃取在高酸度时随酸度的增大而降低,而 Ce(IV)、 Th(IV)同时萃取时, Th(IV)的萃取受到 Ce(IV)的抑制。发现 Cyanex 923 是一种良好 Ce(IV)的萃取剂,可用于铈从稀土(III)、钍中的分离、富集,具有很好的应用前景。第四章在层流型恒界面池的传质过程理论研究基础上,研究了二 (2,4,4-三甲基戊基)膦酸(HBTMPP)、PT-2 萃取 Er(III)的动力学,测定了流体线性流速、有机相浓度、水相浓度和酸度、温度及界面面积等因素对萃取速率的影响,对萃取的控制模式作出判断,为 Cyanex 272、 PT-2 在稀土湿法冶金中的应用提供基础参数。推导出层流型恒界面池中扩散控制模式下的萃取过程善于传质量和扩散层厚度两个基本公式。PT-2 萃取 Er(III)的过程属于扩散控制模式,在不同参数(温度、线性流速、界面面积、两相组成等)条件下,以 ln[(1/β + 1)C_b~a/C_(b,0)~a - 1/β] 对时间 t 作图得到都为直线,这些参数的变化对萃取的控制模式没有影响。萃取速率随温度、线性流速、界面面积等的变化规律也表明,该萃取过程为一扩散控制模式。根据萃取速率随线性流速、界面面积和温度的影响推断 HBTMPP 萃取 Er(III)为扩散控制和化学反应共同作用的混合控制模式。利用稳态法推导出该萃取过程的初始速率方程,该速率方程能和实验结果较好吻合。第五章用 HPCPC 研究 PT-2、Cyanex 302 及 Cyanex 272-P507 体系分离重稀土元素,评估 HPCPC 的性能及萃取剂的萃取性能,考察了流动相的流速、 pH 及 HPCPC 的转速等对分离效率的影响,并对这些体系萃取重稀土(III)的机理进行了探讨。发现流速对 HPCPC 的分离效率有显著的影响,随流速的增大,理论板数降低,分离度减小;理论塔板数和分离度随转速的变化无明显的变化;在 D 值相同时, Vs/Vm 越小,理论塔板数 N 越大;pH 越高,D 越大,理论塔板数则越低;萃取剂的浓度越高,理论塔板数越低。用 HPCPC 梯度洗脱法在 Cyanex 302 体系中只经过一次运行可将轻、重稀土混合物 La(III)、Sm(III)、Dy(III)和 Tm(III)分离。第六章针对攀西稀土矿 冶炼工艺中存在由于稀土收率低、放射性钍未得到分离和利用、存在二个放射性废渣和放射性废水等问题,采用溶剂萃取法,从攀西矿氧化焙烧-硫酸浸出液中萃取分离钍和铈(IV)。研究了 N1923 从氟碳铈矿硫酸浸出液中萃取分离钍和铈(IV)的工艺,并在此基础上提出从攀西矿中萃取分离铈(IV)、钍和提取氯化稀土的流程 I。用 N1923 萃取铈(IV)、钍,稀硫酸为洗液,形成含四价铈及钍的有机相和含三价稀土元素的萃余液,实现铈、钍与三价稀土的萃取分离。由于用含过氧化氢的硫酸溶液反萃铈(IV)困难,用含过氧化氢的硝酸溶液反萃铈(IV)、钍,再以 Cyanex 923 萃取钍,实现钍和铈(III)的分离。还研究了用 S501 萃取萃取铈(IV)工艺,以稀硫酸为洗液,用含过氧化氢的硫酸溶液为反萃取液反萃铈(IV)。解决了萃取过程铈(IV)的还原性问题;探明了氟离子对萃取过程的影响以及在料液、洗液、反萃取液中加入硼酸的作用,在大量数据的基础上提出了工艺的各成分的组成。
Resumo:
The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.
Resumo:
The extraction of zinc(II) and cadmium(II) from a chloride medium by mixtures of primary amine N1923 and organophosphorus acids [di-(2-ethylhexyl)-phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP), isopropyl phosphonic acid 1-hexyl-4-ethyloctyl ester, bis(2,4,4-trimethylpentyl) phosphinic acid, bis(2,4,4-trimethylpentyl) monothiophosphinic acid, and bis(2,4,4-trimethylpentyl) dithiophosphinic acid] has been studied in the present paper. Results show that only the mixtures of N1923 + HEH/EHP and N1923 + Cyanex272 have synergistic effects on zinc(II), but the other mixtures have no evident synergistic effects. All six mixtures have no evident synergistic effects on cadmium(H). A possible explanation of the different extraction abilities is given based on the structure of the extractants. Furthermore, the possibilities of separating zinc(II) and cadmium(II) with these mixtures are investigated according to the extractabilities. It is possible to separate Zn2+ from bulk cadmium with N1923 and HEH/EHP mixtures and separate Cd2+ from bulk zinc with N1923 and Cyanex301 mixtures.
Resumo:
The solvent extraction of rare earths from chloride solution has been investigated using mixtures of 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP, P507) and organophosphorus acids [di-(2-ethylhexyl)phosphoric acid (HDEHP, P204), isopropylphosphonic acid 1-hexyl-4-ethylocryl ester (HHEOIPP), bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272), bis(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302), and bis(2,4,4-trimethypentyl)dithiophosphinic acid (Cyanex 301)]. Results show that the extractability of the selected extractants for rare earths decreases in the order: HEHEHP/HDEHP > HEHEHP/Cyanex 301 > HEHEHP/HHEOIPP > HEHEHP/Cyanex 302 > HEHEHP/Cyanex 272. A possible explanation of the different extractabilities is given based on the structure of the extractants. Furthermore, the possibilities of the separation of adjacent rare earths with these mixtures were investigated according to the extractabilities; the results show the possibility of separating the rare earths.
Resumo:
The extraction of zinc(II) and cadmium(II) from chloride solution by mixtures of primary amine N1923 and Cyanex272 (HA) was studied. The synergistic effect was observed for the extraction of zinc(II) while no synergistic effect for cadmium(II), which makes it possible to separate zine(II) and cadmium(II) with the mixtures. The results showed that zinc(II) was extracted as (RNH3Cl)(3) . ZnCIA instead of ZnA(2) . 2HA which was extracted by Cyanex272 alone. The extraction mechanism was discussed and the formation constants and thermodynamic functions were determined. The separation factors between zinc(II) and cadmium(II) were calculated.
Resumo:
The rate of extraction of Er(III) from aqueous acetate solutions at 0. 2 mol/L ionic strength by HBTMPTP in n-heptane was studied by using a constant interfacial area cell with laminar flow at (30+/- 0. 5)degrees C. The interfacial activity of HBTMPTP was investigated at n-heptane/0. 2 mol/L (H, Na)Ac (pH=5. 00) interface, The rate of Er(III) extraction was measured at different chemical compositions by varying hydrogen ion, HBTMPTP, Cyanex 302 and chlorine ion concentrations, The effect of stirring speed, temperature and special interfacial area on the rate of extraction was also studied. The results showed that, under the conditions of the experiments, the overall rate is diffusion controlled, that the impurities of Cyanex 302 have the effect of synergistic extraction.
Resumo:
在 ( 3 0± 0 .5)℃下 ,用层流恒界面池研究了铒在 HBTMPTP-正庚烷 -0 .2 mol/ L( H,Na) Ac萃取体系中的传质动力学 .测定了该体系的界面张力 ,考察了水相酸度、萃取剂浓度、氯离子浓度、温度和比界面对萃取速率的影响 .实验表明 ,在本实验条件下 ,萃取过程属于扩散控制过程 .Cyanex3 0 2中的杂质具有动力学的协萃作用
Resumo:
Extraction and separation of Eu3+ and Zn2+ in sulfuric acid solution was investigated by hollow fiber membrane with cyanex 302 (bis (2,4,4-trimethylpentyl) monothiophosphinic acid) in counter-currently circulating operation. Reaction mechanism of membrane extraction and effect of extractant concentration and H+ concentration in aqueous phase on the mass transfer coefficient were discussed. It can be concluded that Zn2+ can be extracted completely from Eu3+ sulfate solution according to the kinetics competing difference. In one extractor process, extraction percentage of Zn2+ was not completely and Eu3+ was not extracted. Extraction percentage of Zn2+ reached 94.92%, but Eu3+ only reached 8.59% after 100 minutes extraction in two series connectors and that of Zn2+ and Eu3+ reached 99.9% and 6.53% respectively after 40 minutes extraction in three series connectors.