90 resultados para Cr^4 :YAG
Resumo:
介绍了近几年迅速发展的一种新型激光介质——透明Nd:YAG多晶陶瓷的发展状况,对比分析了多晶陶瓷与单晶的光谱特性、激光特性和连续实验研究情况。并对钛宝石激光器调谐至808nm,端面抽运Nd:YAG陶瓷被动调Q全固态激光器的脉冲运转进行了较为详细的理论分析和实验研究。采用初始透射率为90%的Cr^4+:YAG可饱和吸收晶体,被动调Q的阈值功率为119mW,当端面抽运功率为465mW时,获得波长为1064nm,脉宽为16ns,重复频率为18.18kHz,单脉冲能量为3.4μJ,平均输出功率为61mW的稳定调Q
Resumo:
报道了激光二极管(LD)抽运的Nd:YLF激光器,采用平凹腔结构,分别用两片Cr^4+:YAG可饱和吸收晶体,实现了被动调Q,输出激光波长为1053nm。采用厚度为0.5mm小信号透过率为90%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为60.6ns,平均功率为1.5W,重复频率为9.5kHz,单脉冲能量为157.9mJ;采用厚度为0.55mm小信号透过率为95%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为68.6ns,平均功率为1.35W,重复频率为14kHz,单脉冲
Resumo:
采用传统的X型像散腔,利用一块精心设计的半导体可饱和吸收镜(SESAM)做启动元件,实现了自启动的Kerr锁模Cr4+∶YAG激光器.输出脉冲的最窄脉宽小于80 fs,脉冲重复频率为120 MHz,脉冲峰值功率可以达到100 W以上.
Resumo:
研究了室温下Yb:YAG的上转换荧光光谱,此荧光归因于Yb^3+离子的“合作”发光和Yb抖离子到稀土杂质离子的能量转移。测试了Yb;YAG晶体的X射线荧光,发光峰对应于电荷迁移态到Yb^3+离子的基态、激光态间的跃迁。研究了Cr,Yb:YAG晶体的荧光光谱。讨论了Cr^4+激光输出的可能性。
Resumo:
The fluorescence emission spectra of Cr:Yb:YAG crystal are measured and the effective stimulated emission cross section of the crystal are obtained from -80 degrees C to +80 degrees C. A linear temperature dependence between -80 degrees C and +80 degrees C is reported for the 1.03 mu m peak stimulated emission cross section of Cr:Yb:YAG crystal. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The fluorescence emission spectra of Cr:Nd:YAG crystal are measured and the effective stimulated emission cross-section of the crystal is obtained from -80 to +80 degrees C. A linear temperature dependence between -80 and +80 degrees C is reported for the 1.064-mu m peak stimulated emission cross-section of Cr:Nd:YAG crystal. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
用光纤耦合激光二极管抽运Cr,Yb:YAG晶体获得了1.03 μm的自调Q激光输出,输出的调Q脉冲非常稳定,抽运阈值功率为680 mW,脉冲宽度为3.3 ns,获得的平均功率为156 mW,斜率效率为18.5%。随着抽运功率的增大,重复频率成线性增长,而脉宽略有减少,单脉冲能量和峰值功率都始终呈增大趋势。光束质量因子M2为1.17。
Resumo:
用提拉法生长了掺铬、钕的钆镓石榴石(Cr^4+,Nd^3+:GGG)自调Q激光品体。报道了室温下的吸收光谱和荧光光谱特性。分析了Cr离子浓度对光谱性质的影响。比较了Cr^4+:GGG,Nd^3+:GGG和(Cr^4+,Nd^3+):GGG晶体吸收光谱的关系。测量了(Cr^4+,Nd^3+):GGG晶体和Nd^3+:GGG晶体的荧光寿命,它们分别是33μs和250μs。实验表明,(Cr^4+,Nd^3+):GGG晶体是一种非常有潜力的自调Q激光晶体,可以实现大功率激光器的小型化和全固态化。
Resumo:
用提拉法生长了掺铬、钕的钆镓石榴石(Cr^4+,Nd^3+:GGG)晶体,研究了室温下的吸收光谱和荧光光谱性质,以及晶体中Cr离子浓度对Nd离子光谱性质的影响。应用Judd—ofelt理论计算了强度参数Ωt(t=2,4,6),自发辐射跃迁几率、荧光分支比和辐射辱命等光谱参数。应用McCumber理论计算^4F3/2→^4I11/2能级跃迁的受激发射截面。结果表明:Cr^3+在300~900nm之间较强地增加了吸收截面,尤其是伴随Cr^3+→Nd^3+有效的能量转移。Cr^4+在1.06μm附近的吸收减弱了
Resumo:
采用传统无压烧结工艺制备出透明性良好的掺Cr的Al2O3透明陶瓷;测定了其吸收光谱和荧光光谱,发现在Al2O3六配位的八面体结构中,除了有Cr^3+离子的特征吸收峰外,由于有Mg^2+的电荷补偿作用,也有Cr^4+离子,Cr^4+的荧光发射峰位于1223nm附近,与Cr^4+在四面体中的发光行为一致。但其荧光发射峰较窄,半高宽△λ仅为37nm。
Resumo:
By use of a laser diode as a pump source, a self-Q-switched laser from a Cr,Nd:YAG crystal is demonstrated. The output Q-switched traces are very stable, the threshold pump power is 3.5 W, the pulse duration is 50 ns, and the slope efficiency is as high as 20%. In addition, the pulse width remains constant while the pulse repetition rate Varies with pump power. (C) 2000 Optical Society of America OCIS codes: 140.0140, 140.2020, 140.3380, 140.3480, 140.3540, 140.3580.
Resumo:
在铋掺杂的各种玻璃体系中能够产生覆盖1.2~1.6μm区间的超宽近红外发光;并对此类发光材料的发光机理进行了初步探讨,指出铬铋共掺的锌铝硅玻璃中的宽带近红外发光源于铋而不是Cr^4+离子。
Resumo:
本研究在扫描电镜下观察了由三步酶解部分去壁,选择性抽提和超低温断裂方法处理的小麦幼叶组织的细胞结构,得到以下结果:在细胞横壁下有一个高度交织的周质骨架体系,其纤维直径在24nm左右,可能为微管,这些骨架纤维的部分段落暴露在质膜以外;在细胞内有一些细胞骨架纤维将细胞核与细胞壁相连,这些细胞骨架纤维末端延伸进入细胞壁,它们可能起到将核定位于细胞内特定位置的作用。同时在细胞之间也存在着细胞骨架的联络。在细胞核内,核骨架(核基质纤维)得到清晰的显示。这些骨架对低温很敏感,在遭到损伤性低温危害时解聚。抗寒力高的品种的核骨架纤维的抗低温解聚性能相应地高。抗寒剂CR-4具有提高核骨架的抗低温性能而不发生解聚的作用,因此这可能是CR-4提高植物抗寒力的一个机制。
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.