20 resultados para Couplings.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the couplings between different energy band valleys in a metal-oxide-semiconductor field-effect transistor (MOSFET) device using self-consistent calculations of million-atom Schrodinger-Poisson equations. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2 V and a gate potential close to the threshold potential. We find that all the intervalley couplings are small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived from different bulk valleys can be calculated separately. This will significantly reduce the simulation time because the diagonalization of the Hamiltonian matrix scales as the third power of the total number of basis functions. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings vertical bar K vertical bar are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant vertical bar K vertical bar. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiscale coupling is ubiquitous in nature and attracts broad interests of scientists from mathematicians, physicists, machinists, chemists to biologists. However, much less attention has been paid to its intrinsic implication. In this paper, multiscale coupling is introduced by studying two typical examples in classic mechanics: fluid turbulence and solid failure. The nature of multiscale coupling in the two examples lies in their physical diversities and strong coupling over wide-range scales. The theories of dynamical system and statistical mechanics provide fundamental methods for the multiscale coupling problems. The diverse multiscale couplings call for unified approaches and might expedite new concepts, theories and disciplines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of ferromagnetism in d(0) semiconductors is studied using first-principles methods with ZnO as a prototype material. We show that the presence of spontaneous magnetization in nitrides and oxides with sufficient holes is an intrinsic property of these first-row d(0) semiconductors and can be attributed to the localized nature of the 2p states of O and N. We find that acceptor doping, especially doping at the anion site, can enhance the ferromagnetism with much smaller threshold hole concentrations. The quantum confinement effect also reduces the critical hole concentration to induce ferromagnetism in ZnO nanowires. The characteristic nonmonotonic spin couplings in these systems are explained in terms of the band coupling model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement is present and evolvements symmetrically between both ferromagnetic and antiferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SWAP operation in a two-qubit Heisenberg model in the presence of Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction is investigated. 1t is shown that the SWAP operation can be implemented for some kinds of DM coupling and the influence of DM couplings is divided into different cases. The conditions of the DM coupling under which the SWAP operation is feasible are established. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a triangular triple quantum dots (TTQDs) ring with three terminals, when lowering one of the dot-lead coupling to realize the left-right (L-R) reflection symmetry coupling, the internal C-upsilon of the TTQDs is well preserved in the absence of many-body effect for the symmetric distribution of the dot-lead coupling on the molecular orbits. In the presence of Kondo effect, the decrement of one of the dot-lead couplings suppresses the inter-dot hopping. This happens especially for the coupled quantum dot (QD), which decouples with the other two ones gradually to form a localized state near the Fermi level As a result, the internal dynamic symmetry of the TTQDs ring is reduced to L-R reflection symmetry, and simultaneously, the linear conductance is lifted for the new forming molecular orbit near the Fermi level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subband structure and depolarization shifts in an ultrahigh mobility GaAs/Al0.24Ga0.76As quantum well are studied using magnetoinfrared spectroscopy via resonant subband Landau level coupling. Resonant couplings between the first and up to the fourth subbands are identified by well-separated antilevel-crossing split resonance, while the hy-lying subbands were identified by the cyclotron resonance linewidth broadening in the literature. In addition, a forbidden intersubband transition (first to third) has been observed. With the precise determination of the subband structure, we find that the depolarization shift can be well described by the semiclassical slab plasma model and the possible origins for the forbidden transition are discussed.