276 resultados para Compact Circular Polarization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoelectron angular distributions (PADs) from above-threshold ionization of O-2 and N-2 molecules irradiated by a bichromatic laser field of circular polarization are Studied. The bichromatic laser field is specially modulated such that it can be used to mimic a sequence of one-cycle laser pulses. The PADs are greatly affected by the molecular alignment, the symmetry of the initial electronic distribution, and the carrier-envelope phase of the laser pulses. Generally, the PADs do not show any symmetry, and become symmetric about an axis only when the symmetric axis of laser field coincides with the symmetric axis of molecules. This study shows that the few-cycle laser pulses call be used to steer the photoelectrons and perform the selective ionization of molecules. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circular polarization of excitonic luminescence is studied in CdTe/Cd1-xMgxTe quantum wells with excess electrons of low density in an external magnetic field. It is observed that the circular polarization of X and X- emissions has opposite signs and is influenced by the excess electron density. If the electron density is relatively high so that the emission intensity of the negatively charged excitons X- is much stronger than that of the neutral excitons X, a stronger circular polarization degree of both X and X- emissions is observed. We find that the circular polarization of both X- and X emissions is caused by the spin polarization of the excess electrons due to the electron-spin-dependent nature of the formation of X-. If the electron density is relatively low and the emission intensity of X- is comparable to that of X, the circular polarization degree of X and X- emissions is considerably smaller. This fact is interpreted as due to a depolarization of the excess electron spins, which is induced by the spin relaxation of X-.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pulse compression through filamentation in an argon-filled cell was experimentally demonstrated by using circularly and linearly polarized pulses. A 53 fs circularly polarized pulse was successfully compressed to 15 fs. By using circularly polarized pulse input, the broadened spectrum was much wider and the incident energy in the gas cell can be increased by more than 3/2 times. Much shorter pulse could be compressed by using circularly polarized pulse input. [GRAPHICS] The temporal profile of the compressed pulse (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate polarization-dependent properties of the supercontinuum emission generated from filaments produced by intense femtosecond laser pulses propagating through air over a long distance. The conversion efficiency from the 800-nm fundamental to white light is observed to be higher for circular polarization than for linear polarization when the laser intensity exceeds the threshold of the breakdown of air. (C) 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He-Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier-transform holographic setup, a storage density of 2 x 10(8) bits/cm(2) was obtained on a 60 x 42 mu m(2) area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density. (c) 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photochromic diarylethene, 1,2-bis[2-methyl-5-(3-fluorophenyl)-3-thienyl] perfluorocyleopentene (1a), was synthesized. The compound showed good photochromic reactions both in solution and in PMMA matrix by photo-irradiation. Using the diarylethene lb/PMMA film as recording medium and a He-Ne laser for recording and readout, four types of polarization holographic optical recording were accomplished for the first time. The results show that the orthogonal circular polarization recording is the best method for holographic optical recording when the target photochromic diarylethene is used as recording material. (c) 2006 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using an unperturbed scattering theory, the characteristics of H atom photoionization are studied respectively by a linearly- and by a circularly- polarized one-cycle laser pulse sequence. The asymmetry for photoelectrons in two directions opposite to each other is investigated. It is found that the asymmetry degree varies with the carrier-envelope (CE) phase, laser intensity, as well as the kinetic energy of photoelectrons. For the linear polarization, the maximal ionization rate varies with the CE phase, and the asymmetry degree varies with the CE phase in a sine-like pattern. For the circular polarization, the maximal ionization rate keeps constant for various CE phases, but the variation of asymmetry degree is still in a sine-like pattern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ionization rate of molecules in intense laser fields may be much lower than that of atoms with similar binding energy. This phenomenon is termed the ionization suppression of molecules and is caused by the molecular inner structure. In this paper, we perform a comprehensive study of the ionization suppression of homonuclear diatomic molecules in intense laser fields of linear and circular polarizations. We find that for linear polarization the total ionization rate and the ionization suppression depend greatly on the molecular alignment, and that for circular polarization the ionization suppression of molecules in the antibonding (bonding) shells disappears (appears) for laser intensities around 10(15) W/cm(2). We also find that the molecular photoelectron energy spectra are greatly changed by the interference effect, even though the total ionization rate of molecules remains almost the same as that of their companion atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrons accelerated by a propagating laser pulse of linear or circular polarization in vacuum have been investigated by one-dimensional particle-in-cell simulations and analytical modeling. A stopping target is used to stop the laser pulse and extract the energetic electrons from the laser field. The effect of the reflected light is taken into account. The maximum electron energy depends on the laser intensity and initial electron energy. There is an optimal acceleration length for electrons to gain maximum energy where electrons meet the peak of the laser pulse. The optimal acceleration length depends strongly on the laser pulse duration and amplitude. (C) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure of a diluted magnetic semiconductor (DMS) quantum dot (QD) is studied within the framework of the effective-mass theory. We find that the energies of the electron with different spin orientation exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole decreases rapidly at low magnetic fields and saturate at higher magnetic field due to the sp-d exchange interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of the interband optical transition for different circular polarization exhibts quite different behavior with increasing magnetic field and QD radius.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electron spin resonance (ESR) is optically detected by monitoring the microwave-induced changes in the circular polarization of the neutral exciton (X) and the negatively charged exciton (X-) emission in CdTe quantum wells with low density of excess electrons. We find that the circular polarization of the X and X- emission is a mapping of the spin polarization of excess electrons. By analyzing the ESR-induced decrease in the circular polarization degree of the X emission, we deduce the microwave-induced electron spin-flip time >0.1 mus, which is much longer than the recombination time of X and X-. This demonstrates that the optically detected ESR in type I quantum wells with low density of excess electrons does not obey the prerequisite for the conventional optically detected magnetic resonance. (C) 2001 American Institute of Physics.