76 resultados para Cold Fronts
Resumo:
The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M-2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
Resumo:
在四辊冷轧试验机和Gleeble-1500试验机上进行了热轧微碳钢板的冷轧和退火试验。用D/max-RC衍射仪测量了试样的,/”层织构,并用Roe软件进行了ODF分析。研究表明,所研究的热轧微碳深冲板压下率约为75%,退火升温速度为20-40℃/h时,试样为{111}织构特征;压下率较大(80%)时,退火织构为较弱的{111}组分。无论{111}织构还是非{111}织构都是在形核阶段开始形成,在晶粒长大优先长大,受到定向形核和选择生长双重机制的作用。
Resumo:
Electron beam surface remelting has been carried out on AISI D2 cold-worked die steel. The microstructure and hardening behavior of the electron beam surface remelted AISI D2 cold-worked die steel have been studied by means of optical microscopy and Vickers hardness testing. It was found that AISI D2 steel can be successfully surface hardened by electron beam surface remelting. This surface hardening effect can be attributed to microstructural refinement following electron beam surface remelting. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper the microstructure characteristic of the cold-rolled deformed nanocrystalline Nickel metal has been studied by transmission electron microscopy (TEM). The results show that there were step structures near by grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It indicates that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size became about 100 nm, the deformation occurs only depend upon the moving of the boundary of the stack faults (SFs) which result from the imperfection dislocations emitted from GBs. In the other word, the movement of the boundary dislocations of SFs results to growing-up of the size of the SFs, therefore realizes deformation. However, when the size of stack faults grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reach a critical value stopping the gliding of the partial dislocations, the SFs will stop growing up and leave a step structure behind.
Resumo:
The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about 100nm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from GBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.
Resumo:
In this research, asymmetrical cold rolling was produced by the difference in the coefficient of friction between rolls and sheets rather than the difference of roll radius or rotation speeds. The influence of friction coefficient ratio on the cross shear deformation, rolling pressure and torque was investigated using slab analysis. The results showed that the shear deformation zone length increased with the increase of the friction coefficient ratio. The rolling force decreased only under the condition that the friction coefficient ratio increased while the sum of the friction coefficients was held constant. As the reduction per pass was increased, the shear deformation zone length increased and the rolling force also increased. An increase of the front tension resulted in a decrease of the shear deformation zone length. An increase of back tension, however, led to an increase of the shear deformation zone length. The reduction of rolling torque for the work roll with higher surface roughness was greater than that for the work roll with lower surface roughness. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We present an experimental scheme of a cold atom space clock with a movable cavity. By using a single microwave cavity, we find that the clock has a significant advantage, i.e. the longitudinal cavity phase shift is eliminated. A theoretical analysis has been carried out in terms of the relation between the atomic transition probability and the velocity of the moving cavity by taking into account the velocity distribution of cold atoms. The requirements for the microwave power and its stability for atomic pi/2 excitation at different moving velocities of the cavity lead to the determination of the proper working parameters of the rubidium clock in frequency accuracy 10(-17). Finally, the mechanical stability for the scheme is analysed and the ways of solving the possible mechanical instability of the device are proposed.
Resumo:
Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.
Resumo:
The nonlinear spectroscopy of cold atoms in the diffuse laser cooling system is studied in this paper. We present the theoretical models of the recoil-induced resonances (RIR) and the electromagnetically-induced absorption (EIA) of cold atoms in diffuse laser light, and show their signals in an experiment of cooling Rb-87 atomic vapor in an integrating sphere. The theoretical results are in good agreement with the experimental ones when the light intensity distribution in the integrating sphere is considered. The differences between nonlinear spectra of cold atoms in the diffuse laser light and in the optical molasses are also discussed. (c) 2009 Optical Society of America