188 resultados para Coal Mine
Resumo:
在简要说明榆神府矿区生态脆弱性和煤田开发对我国国民经济发展的重要性基础上,概述了矿区生态环境的现状、地下水的基本特征、采煤对地下水和植被的影响、以及矿区地下水与植被的相互关系;说明地下水资源是支撑矿区生态环境可持续发展的重要因子,采煤对地下水的破坏会严重影响矿区植被的恢复与重建;指出了目前矿区地下水与植被互动关系研究的不足,并提出了今后该领域应着重研究的方向.
Resumo:
土壤入渗性能是最基本的土壤物理特性之一。复垦区土壤的结构组成复杂,入渗特性有别于非矿区土壤。本文以神府东胜煤田马家塔复垦区为研究对象,利用圆盘入渗仪分别测定了复垦区乔木、林地、荒地、灌木林地和草地的土壤入渗特性,用经典统计学方法对复垦区土壤入渗性能的空间变异性进行了分析。实测结果表明,不同土地利用方式下的土壤入渗特性有较大的差异;在测定范围内,乔木林地、荒地、草地和灌木林地的稳定入渗率均表现出0 cm>—3 cm>—15 cm的规律性,其中草地稳定入渗率随吸力的变化更明显。研究表明:乔木林地稳定入渗率和累积入渗量的变异系数分别为0.58和0.49.属于中等变异。
Resumo:
To deal with the problems in multi-component converted seismic wave exploration in coal fields, the wave propagating features and imaging methods of multi-component converted waves in coal measure strata are researched in this thesis firstly. The relations between viscoelasticity and anisotropy in coal measure strata are analyzed to build KEL-TI model, and which seismic wave propagating and attenuating features are researched. The disadvantages of converted wave imaging methods based on common converted point gather are analyzed and constant velocity no NMO converted wave imaging method based on common scattering point gather is put forward, according to Huygens-Fresnel principle, which applicabilities in the elastic isotropic, elastic TI and KEL-TI situations are discussed. To different model simulation data, the common scattering point gathers’ and stacked profiles’ features are analyzed. The results show that the method can image compressional waves and converted waves with high precision. Secondly, the resolution enhancing theories and methods of converted wave are researched by Rayleigh wave suppressing, converted wave static correction and poststack inverse-Q filtering. 1) The polarization filter is designed by the instantaneous polarization information of seismic waves, and the Rayleigh wave suppressing method is researched. From the spectrum analysis before and after filtering, it can be derived that the amplitudes are kept relatively. 2) To constant velocity no NMO converted wave imaging method, the static correction method based on common equivalent offset point gather is put forward and tested to the actual converted waves. 3) The relation between equivalent quality factor of converted wave, compressional wave quality factor and the ratio of compressional to shear wave velocity is derived. The compressional wave quality inversion method by first arrivals of none-offset VSP is researched, and which is then transformed to the equivalent quality factor to perform inverse-Q filtering of actual converted waves. The result has shown that the method can recover the high frequency energy of converted waves. At last, the theories and methods researched in this thesis are practiced to the 3D3C seismic exploration in Guqiao coal mine in Huainan and achieve good results.
Resumo:
Conventional 3D seismic exploration cannot meet the demand of high yield and high efficiency safe production in coal mine any more. Now it is urgent to improve the discovery degree of coal mine geological structures for coal production in China. Based on 3D3C seismic exploration data, multi-component seismic information is fully excavated. First systematic research on 3D3C seismic data interpretation of coal measure strata is carried out. Firstly, by analyzing the coal measure strata, the seismic-geologic model of coal measure strata is built. Shear wave logging is built by using regression analysis. Horizon calibration methods of PP-wave and PS-wave are studied and the multi-wave data are used together to interpret small faults. Using main amplitude analysis technology, small faults which cannot be found from PP-wave sections can be interpreted from the low frequency PS-wave sections. Thus, the purpose to applying PS-wave data to fine structure assistant interpretation is achieved. Secondly, PP- and PS-wave post-stack well constrained inversion methods of coal measure strata are studied. Joint PP- and PS-wave post-stack inversion flow is established. More attribute parameters, which are applied in fine lithology interpretation of coal measure strata, are obtained from combinations of the inversion results. Exploring the relation between rock with negative Poisson’s ratio and anisotropy, fracture development in coal seam are predicted. Petrophysical features of coal measure strata are studied, and the relations between elastic parameters and lithology, fluid and physical properties are established. Inversions of the physical parameters such as porosity, permeability and water saturation, which reflect lithology and fluid property, are obtained. Finally, the approaches of shear wave splitting and Thomsen parameters inversion, which provide new ideas for seismic anisotropy interpretation of coal measure strata, are studied to predict fracture development. The results of practical application indicate that the methods in this paper have good feasibility and applicability. They have positive significance for high yield and high efficiency safe production in coal mine.
Resumo:
Using knowledge of geology, geochemistry, coal petrology, mineralogy, by means of a variety of advanced measuring methods such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled atomic emission spectrometry (ICP-AES), X-ray powder diffraction (XRD), scanning electron microscopy with energy-dispersive spectrometer(SEM-EDS), sequential chemical extract and density fractions, the characteristics of trace elements and minerals in Jurassic Beipiao coal mine under inland limnetic sedimentary environment and in late Permian Jianxin and Qiaotou coal mines under paralic swamp sedimentary environment were studied. Compared with the average concentration in the world bituminous coals, the Beipiao coal was characterized by relatively high contents of Sc, Ti, Cr, Co, Ni, Zn, Se, Sr, Zr, Y, Ba, REE and Th, and lower contents of V, Rb, Cd, Sn, Pb, Bi and U; while the Jianxin coal was relatively enriched in Li, Sc, Ga, Sr, Y, Nb, Sb, Th and U, with low concentration of Be, Co, Ni, Cu, Ge, Zr, Mo, Cd, Cs, Ba, Pb and Bi; and the Qiaotou coal was enriched in Li, Sc, Sr, Nb, Ta, Zr, REE, Hf, Th and U, with low concentration of Be, V, Co, Ni, Cu, Ge, Mo, Cd, Cs, Ba, Tl, Pb and Bi. The concentrations of Ca, Mg and K in Beipiao coal are higher than those in Jianxin coal and Qiaotou coal, while Fe, S and Ti in Beipiao coal are lower than those in Jianxin coal and Qiaotou coal. The proximate analysis of coal samples was carried out, which indicated that Beipiao coal was medium- to high- ash (5.92-60.68%) with low sulphur coal, and Jianxin coal and Qiaotou coal was medium to high ash (8.85-46.33%) with high sulphur. The reflectivity was measured, which explained that Beipiao coal belonged to high volatile bituminous coal, Jianxin coal was low volatile bituminous coal and Qiaotou coal was low volatile anthracite. Quantitative maceral analyses were studied. The characteristics of rare earth elements (REE) were investigated, which showed that the total contents of REE were higher than that of the world's average content. With the increase of coal's metamorphic grade, the total contents of REE decreased from 98.5 X 10"6 of Beipiao coal to 94.2 X 10"6 of Jianxin coal, and to 75.9 X 10"6 of Qiaotou coal, and 5Eu reduced which indicated that the element Eu depleted. The characteristics of REE was controlled by the metamorphic grade of coal. And REE were mainly absorbed in clay minerals in Beipiao coal samples, while in Jianxin and Qiaotou coal mines, REE were primarily related to clay mineral and pyrite. The variation of trace elements in vertical direction of coal seams was studied, and the results showed that different trace elements differed greatly. The correlation between trace elements and ash were determined. Four major trace elements (aluminium-silicates, sulphide, carbonate and phosphate) accounted for the occurrence and distribution of most elements studied were determined. Coal samples were separated by density fraction, which showed that Cr, Cu, Mo and Pb were closely related to inorganic matters mainly distributed in P >2.6 and dropped remarkably in the density fractions P <2.3 . The occurrences of Co, Cr, Ni, As, Se, Mo, U were studied directly and quantitatively using sequential chemical extract with six steps, which showed that Co. Ni, Mo and U were mainly in the form of mineral, and As, Se chiefly in the form of organic state, while Cr mostly in the form of organic state and mineral. Major mineral phases presented in the Beipiao coal were Kaolinite, illite, quartz, calcite, and small amount of siderite, barite. While major mineral phases in Jianxin and Qiaotou coal were pyrite, kaolinite, and small amount of marcasite, rutile, sphalerite. This is the first time that the chromite in the coal was discovered in China, which indicates that Cr occurrence appeared in the form of chromite. The ratio of Sr/Ba, Sr/Ca and V/Ni in Beipiao coal mine under inland limnetic is smaller than that of in Jianxin and Qiaotou coal mines under paralic swamp. The ratio of K/Na and Th/U of Beipiao coal mine is higher than that of Jianxin and Qiaotou coal mine, which proved that Beipiao coal was not affected by sea water and Jianxin and Qiaotou coal were affected by sea water. Trace elements such as Cr, Ni, Mo in minerals were analyzed by SEM-EDS. The factors controlling the enrichment of trace elements can be divided into syngenetic stage factors and epigenetic stage factors.
Resumo:
In this paper, We analyzed the geological and geographical settings of dinosaurs extinction at the end of Cretaceous, especially the effect of the change of the elements contents on dinosaurs extinction. We studied basis on the two typical sections-Cretaceous-Paleocene boundary (Baishantou section (in Jiayin, Heilongjiang province of China) and Arkhara-Boguchan Coal Mine section (in Far East of Russian)) and Longgushan section (in Jiayin, Heilongjiang province of China) mainly. This work provided some evidences for forecasting the effects of global environmental change on bio-circle. The followings are the primary gains: According to the paleo-climate indexes (CaO/MgO,Sr/Ba) and the results of Factor Analysis, we found that there were similar climate in Baishantou section and Arkhara-Boguchan Coal Mine section near the K/E boundary, and both of them took on the trend of temperature declining and precipitation heightening after transitory high-temperature and drought. There are similar change and evlution rule of the elements contents near the boundary in the both sections (Baishantou section and Arkhara-Boguchan Coal Mine section). Both iron group elements and chalcophile elements appeared obvious abnormity. There are not visible correlation between the change of elements contents and climate indexes. This shows that the elements abnormity maybe came from the factors excluding climate or the factors were too many to conceal the influence of climate. --The result of cluster analysis showed that the boundary between BST3-8 and BST3-9 may be the K/E boundary of Baishantou section, and the top of twofold coal were the K/E boundary of Arkhara-Boguchan Coal Mine section which was consistent with accepted conclusion formerly. By contrast of elements contents in dinosaur bones and general organism, in surrounding rock and general sand stone, the regulation of the change of elements contents in dinosaur bones and surrounding rock, we confirmed that dinosaur extinction in Jiayin were relative with the high abnormities of Sr, Ba, Pb, Cr and the low abnormity of Zn, at least, it was them which speeded up dinosaurs extinction. After a series of analysis, we concluded that dinosaurs extinction of this areas tied up with the relative high background values of geo-chemical elements , paleo-climate and disaster incidents. First of all, high background values provided the necessary condition for the accumulation of the elements. Secondly, the drought climate adverse to the survival of dinosaurs, and led them to extinct gradually. finally, disaster incidents, the eruption of volcano or the collision of aerolites, made them exit this planet.
Resumo:
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOz concentration is reduced. The same result can be obtained from chemical equilibrium analysis.
Resumo:
The effect of HCl and SO_2 on CO oxidation in pulverised coal flames was investigated experimentally and kinetically in an entrained flow combustion reactor. Two bituminous coals (German 'Goettelborn' and a Polish coal) were used as fuels with a feeding rate of 1 or 1.5 kg/h. HCl or SO_2 is introduced into the reactor premixed with the primary air. Experimental results indicate that HCl addition may inhibit CO oxidation in coal flames and increases CO emission. Reducing temperature in the reactor will enhance the inhibitory effect of HCl on CO oxidation. The measured CO profiles along the reactor height clearly show that the addition of HCl may inhibit CO oxidation. In the experimental range of SO_2 addition. The inhibiting effect of SO_2 on CO oxidation is less significant than HCl. A detailed kinetic mechanism is used to model the reactions. And the controlling reactions are analysed.
Resumo:
A new type of pulverized-coal combustor, called "Wall-Protecting-Jets Combustor" (hereafter, WPJC has been proposed, designed and studied with both CFD (Computational Fluid Dynamics) and experimental methods. The WPJC is based on a novel concept in which all inlet jets are along the combustor wall. Pilot combustion experiments were conducted to investigate the combustion performance of WPJC. Two-phase flows and pulverized-coal combustion were simulated to study the mechanism of),WPJC using the commercial software FLUENT. The results show that the WPJC has many remarkable advantages: wall-protection by the cold jets without the use of refractory materials; low-temperature and three-stage combustion with low NOx emission; negligible ash/slag-deposition; multiple functions with convenient switching between them; effective adjustment of the combustion intensity and the ignition position.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.
Resumo:
To develop low-pollution burners, the effect of a coal concentrator on NO formation in swirling coal combustion is studied using both numerical simulation and experiments. The isothermal gas-particle two-phase velocities and particle concentration in a cold model of swirl burners with and without coal concentrators were measured using the phase Doppler particle anemometer (PDPA). A full two-fluid model of reacting gas-particle flows and coal combustion with an algebraic unified second-order moment (AUSM) turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion and NO formation with different coal concentrators. The results give the turbulent kinetic energy, particle concentration, temperature and NO concentration in cases of with and without coal concentrators. The predicted results for cold two-phase flows are in good agreement with the PDPA measurement results, showing that the coal concentrator increases the turbulence and particle concentration in the recirculation zone. The combustion modeling results indicate that although the coal concentrator increases the turbulence and combustion temperature, but still can remarkably reduce the NO formation due to creating high coal concentration in the recirculation zone.