214 resultados para Chiral ligands
Structural probing of D-fructose derived ligands for asymmetric addition of diethylzinc to aldehydes
Resumo:
A series of new chiral ligands derived from D-fructose have been synthesized and applied in the enantioselective addition of diethylzinc to aldehydes. Comparison of the enantioselectivities obtained with these ligands demonstrated that the catalytic properties are highly dependent upon the structure of ligands, a rational explanation of the structural effects on the catalytic properties is provided. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
手性胺不仅是许多天然产物和手性药物的重要结构单元,而且也是非常有用的拆分试剂、手性配体和手性催化剂。亚胺和烯胺的不对称催化还原是制备手性胺的最直接有效的方式之一,手性有机小分子催化的亚胺不对称还原已取得了很大的进展,但到目前为止,有机小分子催化的烯胺不对称还原极少见文献报道。 本研究以廉价的三氯氢硅为氢源、DMF 等路易斯碱为催化剂实现了烯胺的高效还原。通过反应条件的优化,各种烯胺底物在0.1 eq. DMF 催化下、12 个小时内可以获得非常高的收率(>93%)。 在本课题组前期研究的基础上,我们筛选并设计了一系列以手性哌啶酸和叔丁基亚磺酰胺为母体的有机小分子路易斯碱催化剂,它们能催化三氯氢硅对(Z)-N-苄氧羰基-1-苯基丙烯胺的不对称还原,获得很高的收率和中等的对映选择性,并且具有很好的底物普适性。另外,通过机理方面的研究,我们推测在反应过程中一分子烯胺先捕获一个质子而转变为亚胺正离子,然后受到路易斯碱活化的三氯氢硅中的富电氢原子进攻该亚胺正离子得到还原产物。 另外,本文列出了在此课题进展中所发现的一些新反应,并且试图去阐释这些反应的作用机理。 Catalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which are not only important building blocks of many natrural products and chiral drugs, but also can serve as useful resolution reagents, chiral ligands and chiral catalysts. By now, asymmetric reduction of enamines catalyzed by organocatalysts has scarcely been reported, although organocatalyzed enantioselective reduction of imines has already gained great progress. In this study, we report the DMF-catalyzed reduction of enamines with high yields using HSiCl3 as the reducing agent. Under the optimized reaction conditions, various enamines can be reduced in the presence of 0.1 eq. DMF with high yields (>93%) in 12 hours. We screened a set of Lewis base organocatalysts derived from chiral pipecolinic acid and tert-butanesulfinamide for the reduction of (Z)-N-Cbz-1- phenylpropenamine, including newly designed ones and some of those previously developed in our lab. However, only moderate stereoselectivities, albeit high yields were obtained. As for the mechanism, we speculate that the enamine firstly engages a proton to form an iminium species, which is then attacked by the nucleophlic hydrogen of HSiCl3 activated by Leiws base. During the above studies, we have also discovered some new reactions, for which feasible mechanisms were proposed.
Resumo:
A series of new G-symmetric chiral ligands 8, 9, 11 and 12, consisting of two binaphthyl units linked by a 2,2'-bipyridine bridge, has been synthesized via Suzuki cross-coupling reactions.
Resumo:
Diphenyl-o-tolylmethyl methacrylate (DPTMA) was synthesized and polymerized using initiators of organolithium complexes with (+) - (2S,3S) -dimethoxy-1,4-bis(dimethylamino) butane (DDB) and (-) -sparteine (Sp) as the chiral ligands. DDB was suitable for its complex effective to prepare optically active poly(diphenyl-o-tolylmethyl methacrylate) (PDPTMA) with one-handed helical conformation, whereas only low-molecular weight polymer was formed when Sp was used as ligand due to the repulsive hindrance between the triarylmethyl group and the ligand. A new mutarotation, propeller-propeller transition, was observed for PDPTMA from the optical rotation curves and CD spectra in THF solution. The equivalent period of PDPTMA was estimated to be 14 angstrom based on the x-ray diffraction. (C) 1993 John Wiley & Sons, Inc.
Resumo:
Chiral ferrocene-based phosphine-imine ligands 1-3 and sulfur-imine ligand 4 were applied in the palladium-catalyzed asymmetric allylic alkylation of cycloalkenyl esters. The results revealed that the substitutents in aryl ring, ferrocenylmethyl and benzyliene position strongly affected the enantioselective induction of phosphine-imine ligands, and the most stereoselective ligand was ferrocenylphosphine-imine 1b with a nitro group in the meta-position of phenyl ring. Under the optimized condition, up to 91% (enantiomeric excesses) e.e. of cyclic alkylation product was obtained by the use of 1b. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three optically active Schiff-base ligands have been prepared by condensation of 2-hydroxyacetophenone with (IR,2R)-(-)-1,2-diaminocyclohexane, (1S,2S)-(-)1,2-diphenylethylenediamine or R-(+)-2,2'-diamino-1,1'-binaphthalene, respectively. The products have been characterized by their IR, H-1- and C-13-NMR spectra.