21 resultados para Chemical Sensor
Resumo:
The modification of conducting polymer polypyrrole(PPy) on glassy carbon(GC)by electrcchemical technique, and the study on doping effect of Br anion and electrochemical behavior of PPy film electrode were reported.A new kind of Br~- ion selective electrode has been prepared successfully.The mechanism of the electrode potential response is based on the doping effect of anion in the conducting polymer.Effect of polymerization conditions on the potential response characteristic is investigated in dtail.The PPy...
Resumo:
To search for a high sensitivity sensor for formaldehyde (H2CO), We investigated the adsorption of H2CO on the intrinsic and Al-doped graphene sheets using density functional theory (DFT) calculations. Compared with the intrinsic graphene, the Al-doped graphene system has high binding energy value and short connecting distance, which are caused by the chemisorption of H2CO molecule. Furthermore, the density of states (DOS) results show that orbital hybridization could be seen between H2CO and Al-doped graphene sheet, while there is no evidence for hybridization between the H2CO molecule and the intrinsic graphene sheet. Therefore, Al-doped graphene is expected to be a novel chemical sensor for H2CO gas. We hope our calculations are useful for the application of graphene in chemical sensor.
Resumo:
A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm(-1) frequency shift of E-2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc see to 472 are sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
For an olfactory sensor or electronic nose, the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e(+)/m. We tried to imitate this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is quartz crystal microbalance (QCM) for detecting the change in mass, the other is interdigital electrode (IE) for detecting the change in conduction, as an electro-mass multi-sensor (EMMS). in this paper, the principle and the feasibility of this method are discussed. The preliminary results on the recognition of alcohol by EMMS coated with lipids are presented. Meanwhile, the multi-sensor can also be used as an instrument for research on some physico-chemistry problems. The change in conduction of coated membrane caused by one absorbed molecule is reported. It is found that when a QCM is coated with membrane, it still obeys the relationship Delta F (frequency change of QCM) = K Delta m (mass change of absorbed substance) and the proportional coefficient, K, depends not only on quartz properties but also on membrane characteristics as well. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Phosphatidylcholine (PC) and six other PC-similar lipids are coated on interdigital electrodes, IEs, as sensitive membranes. Eight alcohols (C-1-C-4) are tested in a flow system at room temperature. It is found that all responses are log(response)-log(concentration) linear relations. These results agree with Steven's law in psychophysics. Moreover, the thresholds of the sensors are coincident with human olfactory thresholds. The authors have analysed the data of the lipid hypothesis suggested by Kurihara et al. We have found that this hypothesis is also in agreement with Steven's law. Lipid microresistors are real mimicking olfactory sensors. A definition of an olfactory sensor is suggested.
Resumo:
In this paper, an interdigital electrode lipid film odour sensor (ILOS) is designed, fabricated and tested. It is made from a microfabricated chemiresistor coated with a synthetic multibilayer film. Nine odorants in gas phase at room temperature have been detected using the odour sensor. For most of the odorants, the relation between the response of the ILOS and odorant concentration obeys Stevens' power law, and there is a good correlation between the minimum odorant concentrations that give rise to a change of the sensor's conductance and human olfactory thresholds.
Resumo:
For an olfactory sensor or electronic nose the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e+/m. We tried to use this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is Quartz Crystal Microbalance (QCM) for detecting the change in mass, the other is Interdigital Electrode (IE) for detecting the change in conduction. In this paper the principle and the feasibility of this method are reported. The preliminary results on the recognition of alcohols are presented. The multisensor can be used as an instrument for research on material properties and kinetic process as well.
Resumo:
For an olfactory sensor or electronic nose, the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e(+)/m. We tried to imitate this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is quartz crystal microbalance (QCM) for detecting the change in mass, the other is interdigital electrode (IE) for detecting the change in conduction, as an electro-mass multi-sensor (EMMS). in this paper, the principle and the feasibility of this method are discussed. The preliminary results on the recognition of alcohol by EMMS coated with lipids are presented. Meanwhile, the multi-sensor can also be used as an instrument for research on some physico-chemistry problems. The change in conduction of coated membrane caused by one absorbed molecule is reported. It is found that when a QCM is coated with membrane, it still obeys the relationship Delta F (frequency change of QCM) = K Delta m (mass change of absorbed substance) and the proportional coefficient, K, depends not only on quartz properties but also on membrane characteristics as well. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We present a newly designed colormetric sensor sensitive to pH value based on a gold nanocomposite composed of gold nanoparticles and pH-sensitive polymer{dodecylthioether end functionalized poly[2-(diethlamino) ethyl methacrylate], poly(DEAEMA)-DDT}. We have shown that this design can produce stable GNP precipitate under weakly basic condition(pH=7.5) and this precipitate can be dispersed in acidic solution(pH=4.0), due to the 2-(diethylamino) ethyl methacrylate protonated by H+.
Resumo:
Organic-inorganic hybrid nanofibers are successfully synthesized by incorporating 3,3 ',5,5 '-tetramethylbenzidine (TMB) and H2PtCl6 at room temperature. The morphology and size can be simply controlled by tuning the molar ratio and initial concentration of reactants. A possible formation mechanism was suggested on the basis of the experimental results. The optical properties were investigated and the as-obtained product displays a strong fluorescence emission at room temperature that may be promising for applications in the fabrication of photoelectric materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors.
Resumo:
A phenolphthalein immobilized cellulose membrane for an optical pH sensor was described. The phenolphthalein was first reacted with the formaldehyde to produce a series of prepolymers with many hydroxymethyl groups. In this paper, the prepolymers was abbreviated to phenolphthalein-formaldehyde (PPF). Then the PPF was covalently immobilized to the diacetylcellulose membrane via hydroxymethyl groups. Finally the membrane was hydrolyzed in the 0.1 M NaOH solution for 24 h to reduce the response time. Advantageous features of the pH-sensitive membrane include (a) a large dynamic range from pH 8.0 to 12.50, or even broader, (b) rapid response time (2-30 s), (c) easy of fabrication, and (d) a promising material for determination of high pH values. The immobilized PPF has a broader dynamic range from 8.0 to 12.50 than the free phenolphthalein from pH 8.0 to 11.0, and this was due to the newly produced methylenes in our investigation.