83 resultados para Characteristics of the workforce
Resumo:
Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.
Resumo:
The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Microorganisms play an important role in removing pollutants from constructed wetlands. We investigated the microbial characteristics in a novel integrated vertical-flow constructed wetland (IVCW), which has been in operation in Wuhan, China since 1998. We used phospholipid fatty acid (PLFA) and amoA gene to analyze the structure and diversity of the microbial community within the IVCW. PLFA results suggested that the amount of bacterial PLFA was significantly higher than that of fungal PLFA, but the total microbial biomass represented by PLFA index was low in the system. Microbial spatial distribution showed significantly higher bacterial (both G(+) and G(-)) and fungal biomass in the surface than in the subsurface layers. The ratios of monounsaturated to branched PLFA demonstrated that an anaerobic layer sandwiched by two aerobic layers existed in the IVCW, consistent with the redox potential results. Analysis of the amoA revealed the presence of Nitrosomonas-like sequences in the surface substrate of the downflow chamber and apparent diversities of ammonia-oxidizing bacteria in the system. These results suggest that microorganisms, despite their relatively low biomass, have inhabited the IVCW, and the results will offer some valuable information on microbe to system designers and managers.
Resumo:
Photosynthetic responses to irradiance and temperature of "leaves" and receptacles were compared in February ( vegetative stage) and May ( reproductive stage) in the seaweed, Hizikia fusiforme ( Harvey) Okamura (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. Irradiance-saturated photosynthesis (P-max) was significantly higher in receptacles than in "leaves" on a fresh weight basis, and that of "leaves" was greater in May than in February at ambient seawater temperatures. The optimum temperature for P-max was 30 degrees C for both "leaves" and receptacles, being 5 - 10 degrees C higher than the ambient seawater temperature. The apparent photosynthetic efficiencies were greater in receptacles than in "leaves" within the tested temperature range of 10 - 40 degrees C. The irradiance for saturating photosynthesis for both "leaves" and receptacles was temperature-dependent, with the highest values ( about 200 mu mol photons m(-2) s(-1)) at 30 degrees C.
Resumo:
Photosynthetic responses of rewetted Nostoc flagelliforme to CO2, desiccation, light and temperature were investigated under emersed conditions in order to characterize its ecophysiological behaviour in nature. Net photosynthesis increased to a maximum rate at about 30 % water loss, then decreased, while dark respiration always decreased with the progress of desiccation. Light-saturated photosynthesis and dark respiration were significantly reduced at 8 degreesC, but remained little affected by changes of temperature within the range of 15-35 degreesC. Photosynthetic efficiency (alpha) was maximal at the beginning of desiccation and then reduced with increased water loss. Saturating irradiance for photosynthesis was about 194-439 mu mol quanta m(-2) s(-1), being maximal at about 30 % water loss. No photoinhibition was observed at irradiances up to 1140 mu mol m(-2) s(-1). Light compensation points were about 41-93 mu mol m(-2) s(-1). Photosynthesis of N. flagelliforme was CO2-limited at the present atmospheric CO2 level. The CO2-saturated photosynthesis increased with increase of irradiance (190-1140 mu mol m(-2) s(-1)) and temperature (8-25 degreesC) and decreased significantly with water loss (0-75 %). Photosynthetic affinity for CO2 was sensitive to temperature and irradiance. The CO2 compensation point (Gamma) increased significantly with increased temperature and was insensitive to irradiance. Desiccation did not affect Gamma values before water loss exceeded 70 %. Photorespiratory CO2 release did not occur in N. flagelliforme at the current atmospheric CO2 level.
Resumo:
The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.
Resumo:
We present a model for electrons confined in narrow conducting channels by a parabolic well under moderate to high magnetic fields which takes into account a cutoff in the filling of the subbands. Such a cutoff gives rise to energy-separated subbands and a two-dimensional (2D) like subband depopulation, resulting in a relation between sublevel index n and inverse magnetic field B-1 such that in the high-field regime it changes over to the well-known 2D form as expected, and in the moderate field regime it shows pronounced deviation from linearity. This agrees well with the experimental results. The linear region of the n-B-1 experimental plot is believed to arise from the two dimensionality of the system. Calculations show that no resolvable 1D sublevel exists in the 0.5-mu-m-wide wire at very small magnetic fields (including zero field), which agrees qualitatively with the experimental results found in other wires that the Hall resistance, R(H), approaches its classical value B/n(e)e in this region and R(H) = 0 at B = 0, where n(e) is the electron concentration. In this model the linear and nonlinear regions in the experimental n-B-1 plot are used to extract the characteristic frequency omega-0, and the effective 2D electron concentration N(e)2D, respectively.