358 resultados para Catalytic reforming


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Steam reforming of ethanol over CuO/CeO2 was studied. Acetaldehyde and hydrogen were mainly produced at 260degreesC. At 380degreesC, acetone was the main product, and 2 mol of hydrogen was produced from 1 mol of ethanol. The formation of hydrogen accompanied by the production of acetone was considered to proceed through the following, consecutive reactions: dehydrogenation of ethanol to acetaldehyde. aldol condensation of the acetaldehyde, and the reaction of the aldol with the lattice oxygen [O(s)] on the catalyst to form a surface intermediate, followed by its dehydrogenation and decarboxylation. The overall reaction was expressed by2C(2)H(5)OH + H2O --> CH3COCH3 + CO2 + 4H(2). Ceria played an important role as an oxygen supplier. The addition of MgO to CuO/CeO2 resulted in the production of hydrogen at lower temperatures by accelerating aldol condensation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autothermal reforming of methanol for hydrogen production was investigated over ZnO-ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2-ZrO2)CeO2-ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO-ZnCr2O4/CeO2-ZrO2 and ZnO-ZnCr2O4 catalysts were characterized by XRD, TEM, H-2-TPR and XPS. The results show that CeO2-ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H-2/CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H-2/CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H-2 content reaches 52.47 vol%, while the ratio of H-2/CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 degrees C for the current study) and more catalyst are favorable for getting a higher H-2/CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a series of Sr1-xLaxNiAl11O19 catalysts were synthesized and their chemical and physical properties were investigated by XRD, UV-DRS, H-2-O-2 titration, TPR and Py-IR techniques. The experimental results show that the Sr1-xLaxNiAl11O19 catalysts have a magnetoplumbite structure and Ni ion is shared between tetrahedral and octahedral sites of the spinel blocks, and the amount of nickel ions in the tetrahedral environment increases with the increase of x value in Sr1-xLaxNiAl11O19. The TPR study revealed that the reducibility of the series of the catalysts depends strongly on the substitution value x, that is, a low temperature peak appears for samples without substitution, in case of samples with x = 1 high temperature peak appears, and for samples with 0catalytic activity for reforming reaction due to the similar dispersion of Ni particle. Whereas, the substitution has a great effect on the acidity of catalyst, the number of acidic sites and amount of the carbon deposition on the catalyst surface. So it is evident that carbon deposition in carbon dioxide reforming of methane can be suppressed by decreasing the acidity of the complex oxides catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of the catalyst, LaNiAl11O19, for the methane reforming with carbon dioxide was synthesized and evaluated. LaNiAl11O19 has a hexaaluminate structure and can keep large surface and heat resistance against sintering at high reaction temperature. As compared with La2O3-Ni/SrAl12O19, in the CH4 + CO2 reaction, LaNiAl11O19 catalyst displays a higher catalytic activity, lower coking amount and excellent sintering resistance of Ni particle, due to its stable structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to effectively integrate catalytic partial oxidation (CPO) and steam reforming (SR) reactions on the same catalyst, autothermal reforming (ATR) of n-octane was addressed based on thermodynamic analysis and carried out on a non-pyrophoric catalyst 0.3 wt.% Ru/K2O-CeO2/gamma-Al2O3. The ATR of n-octane was more efficient at the molar ratio Of O-2/C 0.35-0.45 and H2O/C 1.6-2.2 (independent parameters), respectively, and reforming temperature of 750-800 degrees C (dependent parameter). Among the sophisticated reaction network, the main reaction thread was deducted as: long-chain hydrocarbon -> CH4, short-chain hydrocarbon -> CO2, CO and H-2 formation by steam reforming, although the parallel CPO, decomposition and reverse water gas shift reaction took place on the same catalyst. Low temperature and high steam partial pressure had more positive effect on CH4 SR to produce CO2 other than CO. This was verified by the tendency of the outlet reformate to the equilibrium at different operation conditions. Furthermore, the loss of active components and the formation of stable but less active components in the catalyst in the harsh ATR atmosphere firstly make the CO inhibition capability suffer, then eventually aggravated the ATR performance, which was verified by the characterizations of X-ray fluorescence, BET specific surface areas and temperature programmed reduction. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.