25 resultados para Campo magnetico, satellite, simulatore
Resumo:
An on-board space experiment of bubble thermocapillary migration was performed in the Chinese 22nd recoverable satellite in 2005. Silicone oil of nominal viscosity 5cSt was used as the continuous phase in the experiment. Air bubbles were injected into the liquid in the same direction as the constant temperature gradient in the liquid. The velocities of bubbles were obtained by recording the paths of the bubbles. The results indicate that the scaled velocity of bubbles decreases with an increase of the Marangoni number extended to 9288, which agrees with the results of previous space experiments and numerical simulation. In addition, the interaction between two bubbles was also observed in the space experiment. The trajectories and the velocities of the bubbles were obtained. The two-bubble experiment results are also consistent with the theoretical analysis.
Resumo:
The efforts involved in developing a small satellite for scientific purposes in China in recent years are introduced in the present paper. The project is arranged on a case to case principle depending upon requirements and financial support. The space technology of a satellite and rockets, which have been developed over a relatively longer period in China, have been transferred to the scientific research of small satellites for improvement of the quality requirements. The surplus payloads of the rocket and satellite are used as the payloads of the small satellite and scientific experiments at a low cost. As an example, the project of balloon satellites for atmospheric research was successfully completed in 1991. The experience of the project management is of great benefit for further organization and arrangement of other projects. Opportunities exist for surplus payloads to be used in the future, and a small satellite for magnetospheric research will be launched in 1993.
Resumo:
Because their breeding and wintering areas are in remote locations, little is known about the biology of Black-necked Cranes (Grus nigricollis), including their migratory behavior. Using satellite telemetry, we monitored the migration of Black-necked Cran
Resumo:
Most traditional satellite constellation design methods are associated with a simple zonal or global, continuous or discontinuous coverage connected with a visibility of points on the Earth's surface. A new geometric approach for more complex coverage of a geographic region is proposed. Full and partial coverage of regions is considered. It implies that, at any time, the region is completely or partially within the instantaneous access area of a satellite of the constellation. The key idea of the method is a two-dimensional space application for maps of the satellite constellation and coverage requirements. The space dimensions are right ascension of ascending node and argument of latitude. Visibility requirements of each region can be presented as a polygon and satellite constellation as a uniform moving grid. At any time, at least one grid vertex must belong to the polygon. The optimal configuration of the satellite constellation corresponds to the maximum sparse grid. The method is suitable for continuous and discontinuous coverage. In the last case, a vertex belonging to the polygon should be examined with a revisit time. Examples of continuous coverage for a space communication network and of the United States are considered. Examples of discontinuous coverage are also presented.