208 resultados para Ca2 -atpase
Resumo:
Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
近年来,随着温室气体体积分数不断上升,研究CO2和O3体积分数升高对植物的影响已取得一定进展,但二者对植物的复合作用及生理研究不够深入。文章利用开顶式气室研究了大气CO2和O3体积分数升高对银杏(Ginkgo biloba L.)光合特性的影响。结果表明,在整个生长季内,与对照相比,在大气CO2体积分数为700×10-6条件下,银杏叶片净光合速率显著增加(P<0.05),希尔反应活力增大,Ca2+/Mg2+-ATPase活性增强,光合产物可溶性糖和淀粉含量增多;而在O3体积分数为80×10-9的情况下,银杏叶片净光合速率下降,希尔反应活力减小,Ca2+/Mg2+-ATPase活性减弱,光合产物可溶性糖和淀粉含量减少;在CO2和O3复合作用(700×10-6+80×10-9)条件下,银杏叶片净光合速率、希尔反应活力、可溶性糖和淀粉均有所增加,且淀粉含量增加极显著(P<0.01),而Ca2+-ATPase活性先增强后减弱,Mg2+-ATPase活性先减弱后增强。说明CO2可缓解O3对银杏的负效应,而O3亦对CO2的正效应有削弱作用。
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.