91 resultados para CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been a resurgence of interest in inhibitors of cyclic nucleotide phosphodiesterases (PDE) and enzymes responsible for the intracellular hydrolysis of the second messenger cAMP and cGMP. In this study, a series of 2-substituted phenyllimidazo[4,5-b]pyridines have been made to investigate 3D-QSAR of PDE activity using CoMFA. CoMFA resulted in a quantitative description of the major steric and electrostatic field effects, and gave significant new insights to factors governing PDE inhibition activity. The model was used to predict the PDE inhibition activity of imidazopyridines with satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8-1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0-1.5 in below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of static and cyclic-static tri-axial compression tests under consolidated-undrained conditions are carried out to study the characteristics of post-cyclic strength of the undisturbed and the remolded samples of marine silty clay. It is found that the post-cyclic monotonic strength decreases if the cyclic strain or pore pressure is over a certain value. The maximum degradation is 10% for undisturbed samples while 70% for remolded ones. The relationship between normalized undrained shear strength and apparent overconsolidation ratio, which is determined by the excess pore pressure induced by cyclic loading, is also established. Static consolidated-undrained tests on overconsolidated remolded samples are also performed. It is proposed that the static consolidated-undrained tests may be substituted for the cyclic-static consolidated-undrained tests if the post-cyclic strength degradation of remolded silty clay is needed to be evaluated simply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factor binding sites (TFBS) play key roles in genebior 6.8 wavelet expression and regulation. They are short sequence segments with de¯nite structure and can be recognized by the corresponding transcription factors correctly. From the viewpoint of statistics, the candidates of TFBS should be quite di®erent from the segments that are randomly combined together by nucleotide. This paper proposes a combined statistical model for ¯nding over- represented short sequence segments in di®erent kinds of data set. While the over-represented short sequence segment is described by position weight matrix, the nucleotide distribution at most sites of the segment should be far from the background nucleotide distribution. The central idea of this approach is to search for such kind of signals. This algorithm is tested on 3 data sets, including binding sites data set of cyclic AMP receptor protein in E.coli, PlantProm DB which is a non-redundant collection of proximal promoter sequences from di®erent species, collection of the intergenic sequences of the whole genome of E.Coli. Even though the complexity of these three data sets is quite di®erent, the results show that this model is rather general and sensible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.