370 resultados para CU2 IONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanosized Ce1-xCuxOy materials were prepared by complexation-combustion method. The structural characteristics and redox behaviors were investigated using X-ray diffraction (XRD), temperature programmed reduction (H-2-TPR), UV-Vis, and Raman spectroscopies. In XRD patterns, no evidence of CuO diffraction peaks are observed for the Ce1-xCuxOy samples calcinated at 650 degreesC for 5 h, until the Cu/(Ce + Cu) ratio is higher than 0.4. The stepwise decrease of the 2theta value of CeO2 in Ce1-xCuxOy with the increasing of Cu concentration suggests that the CU2+ ions incorporate into the CeO2 lattice to form Ce1-xCuxOy solid solutions for low Cu/(Ce + Cu) ratios (x less than or equal to 0.1). The CuO phase begins to segregate from the solid solutions with the further increasing of Cu/(Ce+Cu) ratio. The Raman mode at 1176 cm(-1) ascribed to the enhanced defects appears for CeO2 and the Ce0.9Cu0.1Oy solid solution. Compared with CeO2 alone, the Raman mode of cubic CeO2 shifts from 462 to 443 cm(-1) for the Ce0.9Cu0.1Oy solid solution. The H-2 consumption of the fresh Ce0.95Cu0.05Oy is 1.65 times higher than that needed to reduce CuO to Cu, and it increases to 2.4 after a reoxidation of the partially reduced Ce0.95Cu0.05Oy at 300 degreesC, which indicates that the CeO2 phase is also extensively reduced. Compared with the high Cu/(Ce+Cu) ratio sample Ce0.7Cu0.3Oy, the Ce0.9Cu0.1Oy solid solution shows high and stable redox property even after different reoxidation temperatures. When the reoxidation temperature exceeds 200 degreesC, the a peak (similar to170 degreesC) ascribed to the reduction of surface oxygen disappears, and the P peak (similar to190 degreesC) ascribed to the reduction of Cu2+ species and the partial reduction of bulk CeO2 shifts to higher temperatures with the H-2 consumption 1.16 times higher than that for fresh sample. The result demonstrates that the redox property of the CeO2 is Significantly improved by forming the Ce1-xCuxOy solid solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction of diglycolic acid, O(CH2CO2H)(2), with Cu(NO3)(2) . H2O and lanthanoid nitrate hydrate produces a series of novel Ln-Cu mixed metal complexes, [Ln(2)CU(3){O(CH2CO2)(2)}(6)]. nH(2)O (Ln = La, Nd, n = 9; Ln = Er, n = 6), which have been characterized by elemental analysis, i.r. spectroscopy, magnetic measurements and X-ray crystallography. The Ln(3+) and Cu2+ ions are connected by the carboxylate groups of the ligands, resulting in the formation of a complicated network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ESR method has been used to study superhyperfine. interaction of I-127 in [Cu (IO5OH)(2)](5-) ion for Na4KCu(IO5OH)(2) . 12H(2)O single crystal. The main purpose of this paper is to confirm the existence of unpaired electron spin on iodine atom and to find a reasonable explanation for the spin delocalization of CU2+ ions. Based on the ESR parameters of paramagnetic [Cu(IO5OH)(2)](5-) ions, the calculated results show that about 0.77% of the unpaired eletron spin is located on each iodine atom.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+. The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gly-Gly-His tripeptide modified microcantilever was developed by carbodiimide attachment of the Gly-Gly-His tripeptide onto a 3-mercaptopropionic acid(MPA) modified gold surface. The interaction of peptide with Cu2+ ion was studied. At a relative high concentration of Cu2+, the cantilever bent toward the gold side initially as the N atom of imidazole ring and carboxyl group in different peptide coordinate with Cu2+, which results in a tensile surface stress. And then the reversed deflection of microcantilever was observed, which implies that the peptide-Cu2+ complex are formed with conformation transition. In another case, i.e., at a relative low concentration Of Cu2+, only the process of conformation transition was observed due to the coordination mode can not be formed initially. The influences of pH and salt concentration of the test solution on the performance of the sensor were studied. The results show that the maximum deflection was obtained at pH 7 and the bonding Of Cu2+ to the Gly-Gly-His tripeptide was inhibited due to the formation Of CuClx2-x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was discovered experimentally that heteropolymolybdophosphoric acids (HPA) with Keggin and Dawson structure are inactive for H2O2-decomposition, while their salts (Fe3+, Cu2+, Co2+ and Mn2+) all possess more activity. It could be concluded that the act

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer of H+, Li+, Na+, Zn2+, Mg2+ and Cu2+ facilitated by ionophore ETH 129 (N, N, N', N'-tetracyolohexyl-3-oxapentanediamide) across water/nitrobenzene interface has been studied by the cyclic voltammetry. The mechanism of the transfer process has been discussed. The diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NP>>3 g/L35NP Cu2+Pb2+Cd2+pH5.0Na+K+Ca2+Mg2+Cl-NO3-SO42-C2O42-EDTALangmuirFreundlichCu2+Pb2+Cd2+25Cu2+Pb2+Cd2+1.61 mmol/g0.96 mmol/g0.98 mmol/gCu2+Pb2+Cd2+pseudo-30minEDTACu2+Pb2+Cd2+ Cr6+Cr6+Cr6+pH23pHCr6+pH5.0CrCr6+Cr3+Cr3+Cr6+Cr6+ Cu2+Pb2+Cd2+Cr6+LangmuirFreundlich25pH5.0LangmuirCu2+Pb2+Cd2+4.20 mmol/g3.13 mmol/g2.97 mmol/gCr6+

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for determining of heavy metal ions by field-amplified sample injection capillary electrophoresis with contactless conductivity detection. The effects of the 2-N-morpholinoethanesulfonic acid/histidine (MES/His) concentration in the sample matrix, the injection time and organic additives on the enrichment factor were studied. The results showed that MES/His with a low concentration in the sample matrix, an increase of the injection time and the addition of acetonitrile improved the enrichment factor. Four heavy metal ions (Zn2+, Co2+, Cu2+ and Ni2+) were dissolved in deionized water, separated in a 10 mM MES/His running buffer at pH 4.9 and detected by contactless conductivity detection. The detection sensitivity was enhanced by about three orders of magnitude with respect to the non-stacking injection mode. The limits of detection were in the range from 5 nM (Zn2+) to 30 nM (Cu2+). The method has been used to determine heavy metal ions in tap water.