48 resultados para CPG (Central pattern generator)
Resumo:
具有三维运动能力和独特的节律运动方式,使生物蛇能在复杂的地形环境中生存.大多数动物节律运动是由中央模式发生器(Centralpatterngenerator,CPG)控制的.以此为理论依据,首次以循环抑制建模机理构建蛇形机器人组合关节运动控制的CPG模型.证明该模型是节律输出型CPG中微分方程维数最少的.采用单向激励方式连接该类CPG构建蛇形机器人三维运动神经网络控制体系,给出该CPG网络产生振荡输出的必要条件.应用蛇形机器人动力学模型仿真得到控制三维运动的CPG神经网络参数,利用该CPG网络的输出使“勘查者”成功实现三维运动.该结果为建立未探明的生物蛇神经网络模型提供了一种全新的方法.
Resumo:
依据生物利用中央模式发生器(Central pattern generator,CPG)的自激行为产生有节律的协调运动适应多种环境,基于循环抑制CPG建模理论设计了蛇形机器人CPG控制器模型,分析了单个神经元、循环抑制CPG以及该控制器模型的稳定性,并把该控制器应用到一个结合蛇形机器人“勘查者-Ⅰ”动力学特性的仿真模型,得到了实现蜿蜒运动的CPG控制器参数,进而研究了调节S波个数、身体构形曲率、蜿蜒运动速度以及运动轨迹曲率的CPG控制器参数设定策略。此外,“勘查者-Ⅰ”应用该CPG控制器的输出成功实现了蜿蜒运动。该研究结果为设计人工CPG控制器提供了一个可行的方法。
Resumo:
蛇具有细长无肢的身体、独特的半球形关节,使其可在神经系统控制下完成与环境相适应的多种节律运动。模仿蛇的运动机理和行为方式而设计的蛇形机器人克服了轮腿式机器人的缺点,增加了机器人的运动方式,扩大了机器人的应用范围。但应用传统的控制策略实现蛇形机器人运动控制遇到了很难克服的问题。随着社会经济与科技的发展,研究人员把从蛇运动神经系统研究中得到的启示应用到蛇形机器人上,希望不仅可以解决其运动控制问题,更能在构型、步态及控制机制上皆可展示蛇的特征。 生物学家已经证明动物的节律运动是其低级神经中枢的自激行为,是由中枢模式发生器(Central Pattern Generator,CPG)控制的。中枢模式发生器是一种能够在缺乏有规律的感知和中枢控制输入的情况下,产生有节奏模式输出的神经网络。 本文以国家自然科学基金课题《基于CPG的蛇形机器人控制方法研究》和国家“863”高技术计划资助项目《具有环境适应能力的蛇形机器人的研究》为依托,突破以相互抑制机理研究CPG的传统观点,首次创新性地提出应用循环抑制(Cyclic Inhibition, CI)机理来研究蛇形机器人的CPG建模与实现问题。本研究涵概了神经元模型的特性分析、蛇形机器人关节循环抑制CPG建模理论、蛇形机器人循环抑制CPG神经网络稳定性分析以及典型步态的生成方法、循环抑制CPG神经网络控制蛇形机器人蜿蜒运动参数设定策略、应用动力学仿真和实验对该CPG控制方法有效性的验证。 首先,本文介绍了两个用于CPG建模研究的蛇形机器人“勘查者”和“勘查者-I”。给出各自机械系统、控制系统的构成和动力学仿真平台。 其次,详细分析了神经元以及传统的相互抑制(Mutual Inhibition, MI)CPG的特性。从工程角度首次创新性地应用循环抑制建模理论构建了蛇形机器人CPG模型,并对其稳定性进行了深入的分析。首次证明持续型神经元构成的单向循环抑制(Unilateral Cyclic Inhibition, UCI) CPG是能产生振荡输出CPG中微分方程数量最少的,而且其产生振荡输出的机理完全不同于传统的相互抑制CPG。其不需要具备调整功能,只需要神经元之间强的单向循环抑制连接。 第三,首次应用单向激励连接循环抑制CPG构成蛇形机器人神经网络系统。分析了其稳定性,给出其产生振荡输出的条件。通过仿真和实验验证了循环抑制CPG神经网络实现典型步态(蜿蜒运动、伸缩运动和侧向运动)的有效性。首次应用双向循环抑制(Bidirectional Cyclic Inhibition, BCI)CPG神经网络在不同高级控制神经元命令激活下的输出实现蛇形机器人典型运动步态之间的转换。为蛇节律运动生成机制建模提供了新方法。 最后,从实时性、控制方便性等工程应用的角度,对单向循环抑制CPG神经网络实现蛇形机器人蜿蜒运动控制进行了深入的分析。给出了S-波形、幅值、运动速度和运动轨迹曲率的参数设定策略。该系统应用首CPG自激励权重调解成功解决了传统CPG控制系统中CPG的个数比蛇形机器人关节数多一个的问题,并用其实现了一种独特的转弯控制策略。 综上,为蛇形机器人运动控制提供了全新的方法。
Resumo:
A survey was carried out in the central and north part of the Huanghai Sea (34.5degrees similar to 37.0degreesN, 120.5degrees similar to124.0degreesE) during June 12 similar to 27, 2000. It was found that the abundance of marine flagellate ranged from 45 to 1278 cell/ml, 479 cell/ml in average. Flagellate was more abundant in the central part than in the north part of Huanghai Sea, and the abundance decreased with the increasing distance from the coast, showing a similar distribution pattern with isotherm. Vertically, high density of flagellate was always presented in the bottom of thermocline, and formed a dense accumulation in the central area of the Huanghai Sea Cold Water Mass. The effects of physical and biological factors on the distribution of marine flagellate in early summer were discussed. Water temperature (especially the existence of thermocline) rather than salinity showed significant effect on the distribution pattern of marine flagellate in the Huanghai Sea in early summer. When comparing the abundance of marine flagellate with that of other microorganisms, it revealed a comparatively stable relationship among these organhisms, with a ratio of heterotrophic bacteria: cyanobacteria: flagellate: dinoflagellate: ciliate being 10(5) 10(3):10(2):10(1):10(0).
Resumo:
The western black crested gibbon (Nomascus concolor), or black gibbon, one of the lesser apes (Hylobatidae), is mainly distributed in Yunnan, China. Of the four recognized subspecies, N. c. jingdongensis is endemic to the Wuliang Mountain, central Yunnan,
Resumo:
We studied seasonal variation in the activity budget of a habituated group of Nomascus concolor jingdongensis at Mt. Wuliang, Central Yunnan, China from March 2005 to April 2006 via scan sampling at 5-min intervals. The study site is near the northern extreme of the distribution of hylobatids, at high altitude with extreme seasonality of temperature and rainfall. During the day, feeding manifested a bimodal pattern of high activity levels in mid-morning and mid-afternoon, whereas resting reached a peak at midday, with proportionally less time used for traveling. Annually, the group spent an average of 40.0% of the time resting, 35.1% feeding, 19.9% traveling, 2.6% singing, 1.2% playing, and 1.3% in other activities. The proportion of time allocated to activities showed significant monthly variations and was influenced by the diet and temperature. Gibbons increased traveling and playing time and decreased feeding time when they ate more fruit, and they decreased traveling, singing, and playing time and increased feeding time when they ate more leaves. Moreover, when the temperature was low, the gibbons decreased time traveling and increased time resting. In summary, black-crested gibbons employed high-effort activities when they ate more fruit and energy-conservation patterns when they ate more leaves and in low temperature. Behavioral data from the site are particularly useful in understanding gibbon behavioral adaptations to different sets of ecological conditions.
Resumo:
The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.
Resumo:
Perciformes, the largest order of vertebrates with 20 suborders, is the most diverse fish order that dominates vertebrate ocean life. The complete mitochondrial control region (CR) of Trichiurus japonicus (Trichiuridae, Scombroidei) and Pampus sp. (Stromateidae, Stromateoidei) were amplified and sequenced. Together with data from GenBank, the tandem repeats in the mitochondrial CR from 48 species, which covered nine suborders of Perciformes, are reported in this study. The tandem repeats tend to be long in the suborder Percoidei and Stromateoidei. The identical repeats in 21 species of Cichlidae suggest a common origin and have existed before species divergence. Larimichthys crocea shows tandem repeats instead of the typical structure of the central conserved sequence blocks, which was first reported in Perciformes and vertebrates. This might have resulted from interruption of the polymerase activity during the H-strand synthesis. The four broader patterns presented here for the tandem repeats, including those in both the 5' and 3' ends, only in the either 5' or 3' end, and in the central conserved domain of the control region, will be useful for understanding the evolution of species.
Resumo:
Offshore active faults, especially those in the deep sea, are very difficult to study because of the water and sedimentary cover. To characterize the nature and geometry of offshore active faults, a combination of methods must be employed. Generally, seismic profiling is used to map these faults, but often only fault-related folds rather than fracture planes are imaged. Multi-beam swath bathymetry provides information on the structure and growth history of a fault because movements of an active fault are reflected in the bottom morphology. Submersible and deep-tow surveys allow direct observations of deformations on the seafloor (including fracture zones and microstructures). In the deep sea, linearly aligned cold seep communities provide indirect evidence for active faults and the spatial migration of their activities. The Western Sagami Bay fault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied in detail using the above methods. The bottom morphology, fractured breccias directly observed and photographed, seismic profiles, as well as distribution and migration of cold seep communities provide evidence for the nature and geometry of the fault. Focal mechanism solutions of selected earthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximum compression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating a left-lateral strike-slip fault.
Resumo:
Geographic and vertical variations of size-fractionated (0.2-1 mu m, 1-10 mu m, and >10 mu m) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4 degrees S, 160 degrees W to 30 degrees N, 140 degrees E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation (ranging from 27x10(3) to 16,582x10(3) cell l(-1)), followed by Chl.a (ranging from 0.048 to 0.178 mu g l(-1)), and heterotrophic bacteria (ranging from 2.84x10(3) to 6.50 x 10(5) cell l(-1)). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0-30.9%, 35.9-53.7%, and 28.1-57.3% by the >10 mu m, 1-10 mu m and 0.2-1 mu m fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the > 10 mu m and about one third of the 1-10 mu m pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1-10 mu m fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0-20 m) in the equatorial area and at the nitracline (75-100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters.
Resumo:
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Resumo:
Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.
Resumo:
In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.
Resumo:
Smoldering constitutes a significant fire risk both in normal gravity and in microgravity. This space experiment has been conducted aboard the China Recoverable Satellite SJ-8 to investigate smoldering characteristics of flexible polyurethane foam with central ignition in a forced flow of oxidizer. This configuration resulted in a combination of opposed and forward flow smolder. The microgravity experiment is rather unique in that it was performed at constant pressure, and with a relatively high ambient oxygen concentration (35% by volume). The smoldering characteristics are inferred from measurements of temperature histories at several locations along the foam sample. Particularly important is the discovery that there is a transition from smoldering to flaming near the sample end in the opposed smoldering. This transition seems to be caused by strong acceleration of the smoldering reaction. The observed transition serves to initiate a vigorous forward-propagating oxidation reaction in the char left behind by the smoldering reaction. The secondary char oxidation reaction propagates through the sample and consumes most of the remaining char. In forward flow smoldering, the oxidizer depletion by the upstream opposed smolder prevents an exothermic oxidation reaction from being established in the foam until this preceding reaction is completed. Once fresh oxidizer flows in the sample, the existing conditions are sufficient for a self-sustained forward smoldering reaction to take place.