153 resultados para CONDUCTING NANOWIRES
Resumo:
The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Resumo:
Atomistic simulations are used to investigate the mechanical behavior of metal nanowire with fivefold twinned structure. The twinned nanowires were reported in recent experiments [B. Wu et al., Nano Lett. 6, 468 (2006)]. In the present paper, we find that the yield strength of the fivefold twinned Cu nanowire is 1.3 GPa higher than that of the face-centered-cubic (fcc) < 110 > single crystalline Cu nanowire without fivefold twinned structure, and the microstructure-hardened mechanism is primarily due to the twinned boundaries which act as the barriers for the dislocation emission and propagation. However, we also find that the fivefold twinned Cu nanowire has lower ductility than that of fcc < 110 > single crystalline Cu nanowire without the twinned structure, and this is mainly attributed to the scarcity and low mobility of dislocations. In addition, in our simulations the effect of preexisting stacking faults and dislocations on strength of the fivefold twinned nanowires is investigated.
Resumo:
A probe utilizing the bipolar pulse method to measure the density of a conducting fluid has been developed. The probe is specially designed such that the concentration of a stream tube can be sampled continuously. The density was determined indirectly from the measurement of solution conductivity. The probe was calibrated using standard NaCl solutions of varying molarity and was able to rapidly determine the density of a fluid with continuously varying conductance. Measurements of the conductivity profiles, corresponding density profiles, and their fluctuation levels are demonstrated in a channel flow with an electrolyte injected from a slot in one wall.
Resumo:
Microtwins are frequently observed in face-centered-cubic (fcc) metal nanowires with low stacking fault energy. The authors have previously reported that the tensile Yield strength of copper nanowires can be increased by, the presence of twin boundaries. lit this work, simulations are carried out under both uniaxial tension and compression loading, to demonstrate that the strengthening effects are inherent to these nanowires, independent of the loading condition (tensile/compressive). It appears that the strengthening mechanism of the twinned nanowires can be attributed to stress redistribution due to the change of crystallographic orientations across twin boundaries, which requires larger external stress to make them Yield as compared to the twin-free wire.
Resumo:
Using molecular dynamics simulations, we show that the mechanical deformation behaviors of single-crystalline nickel nanowires are quite different from their bulk counterparts. Correlation between the obtained stress-strain curves and the visualized defect evolution during deformation processes clearly demonstrates that a sequence of complex dislocation slip events results in a state of dislocation starvation, involving the nucleation and propagation of dislocations until they finally escape from the wires, so that the wires deform elastically until new dislocations are generated. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.
Resumo:
The melting process of nickel nanowires are simulated by using molecular dynamics with the quantum Sutten-Chen many-body force field. The wires studied were approximately cylindrical in cross-section and periodic boundary conditions were applied along their length; the atoms were arranged initially in a face-centred cubic structure with the [0 0 1] direction parallel to the long axis of the wire. The size effects of the nanowires on the melting temperatures are investigated. We find that for the nanoscale regime, the melting temperatures of Ni nanowires are much lower than that of the bulk and are linear with the reciprocal of the diameter of the nanowire. When a nanowire is heated up above the melting temperature, the neck of the nanowire begins to arise and the diameter of neck decreases rapidly with the equilibrated running time. Finally, the breaking of nanowire arises, which leads to the formation of the spherical clusters. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order. We attribute these intriguing properties to the good and long interbundle connections. Moreover, by the help of an extrapolated Weibull theory, we verify the feasibility of reducing the interbundle slip by utilizing the long-range intertube friction and estimate the ultimate strength of macroscale SWNTs without binding agent.
Resumo:
This letter addresses the issue of deformation mechanisms and mechanical tensile behavior of the twinned metal nanowires using atomistic simulations. Free surfaces are always the preferential dislocation nucleation sites in the initial inelastic deformation stage, while with further plastic deformation, twin boundary interfaces will act as sources of dislocations with the assistance of the newly formed defects. The smaller the twin boundary spacing, the higher the yielding stresses of the twinned nanowires. Twin boundaries, which serve both as obstacles to dislocation motion and dislocation sources, can lead to hardening effects and contribute to the tensile ductility. This work illustrates that the mechanical properties of metal nanowires could be controlled by tailoring internal growth twin structures. (c) 2007 American Institute of Physics.
Resumo:
A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The tension and compression of single-crystalline silicon nanowires (SiNWs) with different cross-sectional shapes are studied systematically using molecular dynamics simulation. The shape effects on the yield stresses are characterized. For the same surface to volume ratio, the circular cross-sectional SiNWs are stronger than the square cross-sectional ones under tensile loading, but reverse happens in compressive loading. With the atoms colored by least-squares atomic local shear strain, the deformation processes reveal that the failure modes of incipient yielding are dependent on the loading directions. The SiNWs under tensile loading slip in {111} surfaces, while the compressive loading leads the SiNWs to slip in the {110} surfaces. The present results are expected to contribute to the design of the silicon devices in nanosystems.
Resumo:
Uniform ZnSe nanowires are observed on the ablation crater on ZnSe crystal surface irradiated by femtosecond lasers in air, while other parts of the sample surface are not polluted. The nanowire growth rate is about 5 mu m/s, it is higher than that fabricated by chemical vapor deposition method by a factor of 10(4). The nanowire length and diameter can be controlled by varying laser pulse energy and pulse number. The formation mechanism is studied and found to be self-catalyzed vapor-liquid-solid process. (c) 2006 American Institute of Physics.