181 resultados para CO2 emission
Resumo:
National Key Research and Development Program [2010CB833502]; National Natural Science Foundation of China [30600071, 40601097, 30590381, 30721140307]; Knowledge Innovation Project of the Chinese Academy of Sciences [KZCX2-YW-432, O7V70080SZ, LENOM07LS-01
Resumo:
Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.
Resumo:
土壤CO2释放通量总量与潜力作为陆地土壤碳循环过程研究的重要组分,一直是国际统碳循环研究的前沿领域。鉴于温带森林对全球气候变化的敏感性,以阔叶红松林为代表的土壤CO2 放通量过程与机制的研究,能够为正确评估我国温带森林土壤碳库动态和潜力提供科学依据。本文利用静态箱/气相色谱技术,连续测定了长白山阔叶红松林及其附近的次生林土壤CO2释放通量并进行比较研究,结果表明:(1)长白山阔叶红松林土壤CO2释放通量具有明显的季节动态,与温度的变化趋势大致相同,在生长季节中表现出8月份>7月份>9月份>5月份>4月份。(2)土壤温度是控制CO2释放的关键驱动因子;土壤含水量变化对CO2 释放亦有一定的影响。(3)不同土壤类型的土壤COZ释放通量强度不同,其中阔叶红松林年C排放量为7253.72 kg/hm2,白桦林排放量为6581.28 kg/hm2,山杨白桦混交林和山杨林排放量分别是6301.64 kg/hm2和4941.77 kg/hm2。(4)凋落物对林地CO2释放有显著的影响,贡献率约占-12%-38%;根系的贡献约为7.26%-57.6%。
Resumo:
Using static chamber technique,fluxes of CO2,CH4 and N2O were measured in the alpine grassland area from July 2000 to July 2001,determinations of mean fluxes showed that CO2 and N2O were generally released from the soil,while the alpine grassland accounted for a weak CH4 sink.Fluxes of CO2,CH4 and N2O ranged widely.The highest CO2 emission occurred in August,whereas almost 90?of the whole year emission occurred in the growing season.But the variations of CH4 and N2O fluxes did not show any clear patterns over the one-year-experiment.During a daily variation,the maximum CO2 emission occurred at 16:00,and then decreased to the minimum emission in the early morning.Daily pattern analyses indicated that the variation in CO2 fluxes was positively related to air temperatures(R^2=0.73)and soil temperatures at a depth of 5 cm(R^2=0.86),whereas daily variations in CH4 and N2O fluxes were poorly explained by soil temperatures and climatic variables.CO2 emissions in this area were much lower than other grasslands in plain areas.
Resumo:
Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.
Resumo:
To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2 flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2 uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00. Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1,19, 1.46 and 0.67 g CO2 m(-2) h(-1) for June, July, August and September, respectively. Diurnal fluctuation Of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m(-2). The total CO2 uptake by the ecosystem was up to 583 g CO2 m(-2) for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m(-2) h(-1) in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 eff lux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 eff lux appeared in April, with a value of 105 g CO2 m(-2). The total net CO2 eff lux for the whole non-growing season was 356 g CO2 m(-2).
Resumo:
除植被冠层的光合作用之外,土壤的呼吸作用是陆地生态系统碳收支中最大的通量。土壤呼吸即使发生较小的变化也能显著地减缓或加剧大气中CO2浓度的增加,从而明显影响到全球气候变化。土壤呼吸速率变化与否以及变化的方向可以反映生态系统对环境变化的敏感程度和响应模式。尽管如此,土壤呼吸仍是一个为人们了解不多的生态系统过程。 草地生态系统是陆地生态系统的一个重要组成部分。针对草地土壤呼吸进行野外实验研究和相应方法论的探讨将对区域乃至全球碳源汇性质的准确估算具有重要的科学意义。然而,近几年来关于草地土壤呼吸的主要研究工作都集中在温带草原和部分热带草原,而针对高寒草甸生态系统土壤呼吸的研究报道还很少。 2008年4月至2009年4月期间,我分别在2008年6、8、10、12月和2009年2月和4月分6次对川西北的典型高寒草甸群落的土壤呼吸进行观测,分析了不同类型高寒草甸群落土壤呼吸的季节变化特征以及环境因子和放牧模式对其影响。主要研究结果如下: 1)该地区高寒草甸生态系统在生长季(6月~8月)土壤呼吸速率较大(6.07~9.30μmolCO2¡m-2¡s-1 ) , 在非生长季( 12 月~ 2 月) 较小( 0.16 ~0.49μmolCO2¡m-2¡s-1 ) 。土壤CO2 年累积最大释放量为3963 ~ 5730gCO2¡m-2¡yr-1,其中,生长季土壤CO2的释放量占年总释放量的85%~90%。非生长季占10%~15%。非生长季所占比例略小于冬季积雪覆盖地区的冬季土壤呼吸占年土壤呼吸量的比例(14%~30%)。温度,尤其地温,是影响该地区高寒草甸生态系统土壤呼吸速率的最主要环境因子。土壤呼吸速率与地上生物量和土壤水分之间没有显著相关性,但是土壤含水量过大会导致土壤呼吸速率下降。 2)在观测期内,草丘区的土壤呼吸显著高于对照区的土壤呼吸,其最大土壤呼吸速率为16.77μmolCO2¡m-2¡s-1,土壤CO2 年累积最大释放量为8145gCO2¡m-2¡yr-1,是对照区的近2 倍。由于草丘在高寒草甸中占有较大的面积比例(近30%),因此,它将对高寒草甸生态系统的碳循环起着重要的作用。 3)放牧模式不仅可以影响高寒草甸群落的土壤CO2 排放,而且还可以改变土壤呼吸的温度敏感性(Q10)。本研究表明,在生长季有长期放牧活动干扰时将会增加土壤向大气中释放二氧化碳的速度,促使土壤碳库中碳的流失。禁牧样地的土壤呼吸速率在刚禁牧时先迅速增大,随着禁牧时间的延长土壤呼吸速率将会下降。此外,与其它放牧模式相比,冬季放牧将高寒草甸群落土壤呼吸速率在生长季达到最大值的时间明显向后推迟。不同放牧模式下高寒草甸群落土壤呼吸的Q10 值大小顺序为:禁牧一年群落>冬季放牧群落>禁牧三年群落>夏季放牧群落>自由放牧群落。 4)基于呼吸室技术的观测方法中,测量前的剪草处理可以明显改变该地区高寒草甸群落的土壤温度和土壤呼吸速率。在生长季,剪草处理将使土壤呼吸速率的瞬时响应增加90%左右。由于剪草处理明显增加了剪草样方白天的土壤温度,而土壤温度与土壤呼吸之间存在着极显著的指数相关关系,因而剪草处理导致土壤呼吸速率迅速增加。因此,在高寒地区基于呼吸室技术观测的土壤呼吸应当进行校正。 综上所述,川西北高寒草甸生态系统土壤呼吸速率在生长季较高,而在非生长季较低。土壤温度是影响该地区土壤呼吸的最主要环境因子。在实验观测期,草丘区土壤呼吸速率显著高于对照区的,是对照区土壤呼吸速率的近2倍。由于测量前的剪草处理可以明显改变待测点的土壤呼吸速率,因此,应对在高寒地区基于呼吸室技术观测的土壤呼吸进行校正。 Soil respiration is the second largest component (less than plant phtotosynthesis) of carbon dioxide flux between terrestrial ecosystems and the atmosphere. A minor change in soil respiration rate can significantly slow down or accelerate the increase of atmospheric CO2 concentration that is closely related to global climatic change. In turn, the change in the flux direction and rate of soil respiration may indicate the elasticity and stability of ecosystems to global changes and human disturbance. However, soil respiration is still an ecosystem process that has been poorly understood. Grassland ecosystem is an important component of the terrestrial ecosystem. Accurately estimating the CO2 flux from soil to atmosphere in situ is the key to evaluating the carbon resource and sink regionally or globally. Despite of extensive studies on the temperate and tropic grasslands, the soil respiration of alpine meadows has not substantially been measured. In the current study, soil respiration was measured for an annual cycle from April, 2008 to April, 2009 for the alpine meadow in northwestern Sichuan Province of China to determine the seasonal variation of soil respiration for the typical plant communities. The results are shown as follows: 1) Large seasonal variation of soil respiration was observed in the alpine meadow. The rate of soil respiration was the greatest (6.07~9.30μmolCO2¡m-2¡s-1) in June and the smallest (0.16 ~ 0.49μmolCO2¡m-2¡s-1) occurred from December to February in the non-growing season. The total emission of soil CO2 was estimated as 3963~5730 gCO2¡m-2¡yr-1, 85%~90% of which was released during the growing season, and 10%~15% during the non-growing season which was slightly less than the ratio of winter and annual CO2 flux from soil. Temperature, particularly the soil temperature, was the major environmental factor regulating the soil respiration. Significant and positive relationships were not found between soil respiration and soil moisture and between soil respiration and plant above-ground biomass, but excessive soil water content would decrease in the rate of soil respiration. 2) The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls (communities located in low and even sites). Considering the large proportion (about 30% on average) of hummock area in the meadow, it can be concluded that the hummocks played an important role in the carbon cycling of the study ecosystem. 3) Grazing patterns affected the flux of CO2 emission and the temperature sensitivity of soil respiration (Q10) in the alpine meadow. Grazing during growing season increased the rate of soil respiration. The rate of soil respiration increased significantly immediately after the alpine meadow being fenced, but thereafter decreased. In addition, grazing in winter delayed the peak respiration rate relative to the non-grazing mode. The Q10 value was the largest in the non-grazed area for one year, and next came the area with grazing in winter, followed by the non-grazed area for three years, the area with grazing in summer, and the non-limited grazed area. 4) In the chamber-based techniques, clipping manipulation before each measurement increased the transient rate of soil respiration by about 90% in the summer of the alpine meadow. As increase in soil temperature at daytime in the clipped plots by clipping and the exponential relationship between soil respiration and temperature, clipping manipulation led to increase in the rate of soil respiration. This suggested that a correction should be done for the techniques if employed in alpine and cold regions. In summary, the rate of soil respiration in the alpine meadow was the greatest in June and the smallest occurred from ecember to February in the non-growing season. Soil temperature was the major environmental factor regulating the soil respiration. The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls. A correction should be done for the techniques if employed in alpine and cold regions, because of the effect of clipping manipulation on soil temperature and respiration.
Resumo:
Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.
Resumo:
High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July-September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007-June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m(-2) year(-1)). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July-September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).
Resumo:
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.
Resumo:
Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.