79 resultados para CHRONOPOTENTIOMETRY WITH LINEAR CURRENT SCANNING
Resumo:
The equation of the potential-current curve for the ion transfer across the liquid/liquid interface during the linear current scanning has been derived theoretically. A method to calculate the kinetics parameters for the ion transfer by the way of linear current scanning is presented. The transfer of TPAs~+ ions, which is a typical basic electrolyte ion usually used in liquld/liquid interface electrochemistry, was practically investigated at the water/nitrobenzene interface.
Resumo:
The transfer of bis-1:11 molybdosilicate heteropolyanion with dysprosium across the water/nitrobenzene interface has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The strandard transfer potential and Gibbs energy estimated from cyclic voltammetry were 0.102V and -39.5kJ.mol(-1), respectively. The kinetic parameters of the transfer were determinated by chronopotentiometry with the linear current scanning.
Resumo:
The transfer behavior of the heteropoly anion [H3PW11O39]4- and the isopoly anion [H2W12O39]4- across the water/nitrobenzene interface was investigated by cyclic voltammetry and chronopotentiometry with linear current scanning. The transfer processes were
Resumo:
Lidocaine transfer across the water/1,2-dichloroethane and the water/nitrobenzene interfaces has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The irreversible hydrolysis occurring in the phase transfer of dicaine at the water/nitrobenzene interface is discussed.
Resumo:
Transfer behaviors across the water/nitrobenzene interface were studied for five choline derivatives by chronopotentiometry with linear current scanning, cyclic voltammetry and differential pulse voltammetry. The irreversible hydrolysis reactions coupled to the phase transfer of ions across the water/nitrobenzene interface were observed. The Gibbs energies of the transfer of choline derivatives show the effects of an additive constitution on hydrophobic property of the medicine.
Resumo:
It has been firstly found by means of cyclic voltammetry (CV) and chronopotentiometry with linear current-scanning (CLC)that 12-silicotungstate anion (SiW_(12)O_(40)~(4-)) with high charge numbers, large molecular volume and symmetric structure can cross
Resumo:
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12-xVxO40]((3+r)-) (x = 1-4) across the water \nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O404-, HPW10V2O404-, H2PW10V2O403-, H3PW9V3O403- and H4PW8V4O(40)(3-) across the water \nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.
Resumo:
In this paper, interfacial waves in three-layer stratified fluid with background current are investigated using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory, and the Kelvin-Helmholtz instability of interfacial waves is studied. As expected, for three-layer stratified fluid with background current, the first-order asymptotic solutions (linear wave solutions), dispersion relation and the second-order asymptotic solutions derived depend on not only the depths and densities of the three-layer fluid but also the background current of the fluids, and the second-order Stokes wave solutions of the associated elevations of the interfacial waves describe not only the second-order nonlinear wave-wave interactions between the interfacial waves but also the second-order nonlinear interactions between the interfacial waves and currents. It is also noted that the solutions obtained from the present work include the theoretical results derived by Chen et al (2005) as a special case. It also shows that with the given wave number k (real number) the interfacial waves may show Kelvin-Helmholtz instability.
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a vertical magnetic bias field. The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions. We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide. We present a detailed experimental study of the motional properties of the atoms in the guide and the relationship between the location of the guide and the vertical bias field. This two-wire guide with vertical bias field can be used to realize large area atom interferometer.
Resumo:
We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.
Resumo:
Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.