199 resultados para CHIRAL-SYMMETRY-BREAKING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a detailed expression of the vibrational potential for the lattice dynamics of single-wall carbon nanotubes (SWCNT's) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low-frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman- and infrared-active modes), velocities of acoustic modes, and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of SWCNT's are fulfilled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE Computer Society; International Association for; Computer and Information Science, ACIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is investigated by varying this parameter while fixing other ones such as the Reynolds number, the density ratio, and the flapping amplitude. Three different flow regimes have been identified when we increase the chord-thickness ratio, i.e., left-right symmetry, back-and-forth chaotic motion, and unidirectional motion with staggered vortex street. It is observed that the chord-thickness ratio can affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal velocity of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to that of a flapping body under constraint is discussed. A comparison between the dynamic behaviors of an elliptic foil and a rectangular foil at various chord-thickness ratios is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the spin-Hall effect in a generalized honeycomb lattice, which is described by a tight-binding Hamiltonian including the Rashba spin-orbit coupling and inversion-symmetry breaking terms brought about by a uniaxial pressure. The calculated spin-Hall conductance displays a series of exact or approximate plateaus for isotropic or anisotropic hopping integral parameters, respectively. We show that these plateaus are a consequence of the various Fermi-surface topologies when tuning epsilon(F). For the isotropic case, a consistent two-band analysis, as well as a Berry-phase interpretation. are also given. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We theoretically investigate the charge transport in the quantum waveguides in the presence of the Rashba spin-orbit interaction and the Dresselhaus spin-orbit interaction. We find that the interplay between the Rashba spin-orbit interaction and Dresselhaus spin-orbit interaction can induce a symmetry breaking and consequently leads to the anisotropic charge transport in the quantum waveguides, the conductance through the quantum waveguides depends sensitively on the crystallographic orientations of the quantum waveguides. The anisotropy of the charge transport can even survive in the presence of disorder effect in realistic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combinatorial testing is an important testing method. It requires the test cases to cover various combinations of parameters of the system under test. The test generation problem for combinatorial testing can be modeled as constructing a matrix which has certain properties. This paper first discusses two combinatorial testing criteria: covering array and orthogonal array, and then proposes a backtracking search algorithm to construct matrices satisfying them. Several search heuristics and symmetry breaking techniques are used to reduce the search time. This paper also introduces some techniques to generate large covering array instances from smaller ones. All the techniques have been implemented in a tool called EXACT (EXhaustive seArch of Combinatorial Test suites). A new optimal covering array is found by this tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the near-threshold eta ' production mechanism in nucleon-nucleon and pi N collisions under the assumption that subthreshold resonance N*(1535) is predominant. In an effective Lagrangian approach that gives a reasonable description to the pN -> pN eta and pi(-) p -> n eta reactions, we find that the excitation of N*(1535) resonance from the t- channel p exchange makes the dominate contribution to the pN -> pN eta ' process, and a value of 6.5 for the ratio of s(pp -> pp eta ') to sigma (pp -> pp eta ') is predicted. A strongcoupling strength ofN*(1535) to eta ' N (g(eta ' NN*)(2)/4 pi = 1.1) is extracted from a combined analysis to pp -> pp eta ' and pi N -> N eta ', and the possible implication to the intrinsic component of N*(1535) is explored.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The axial charges of the proton and N(1440) are studied in the framework of an extended constituent quark model (CQM) including qqqq (q) over bar components. The cancellation between the contributions of qqq components and qqqq (q) over bar components gives a natural explanation to the experimental value of the proton axial charge, which can not be well reproduced in the traditional CQM even after the SU (6) circle times O(3) symmetry breaking is taken into account. The experimental value of axial charge pins down the proportion of the qqqq (q) over bar component in the proton to about 20%, which is consistent with the ones given by the strong decay widths and helicity amplitudes. Besides, an axial charge for N(1440) about 1 is predicted with 30% qqqq (q) over bar component, which is obtained by the strong and electromagnetic decays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A formalism based on a chiral quark model (chi QM) approach complemented with a one-gluon-exchange model, to take into account the breakdown of the SU(6)circle times O(3) symmetry, is presented. The configuration mixing of wave functions for nucleon and resonances are derived. With few adjustable parameters, differential cross-section and polarized-beam asymmetry for the gamma p -> eta p process are calculated and successfully compared with the data in the center-of-mass energy range from threshold to 2 GeV. The known resonances S-11(1535), S-11(1650), P-13(1720), D-13(1520), and F-15(1680), as well as two new S-11 and D-15 resonances, are found to be dominant in the reaction mechanism. Moreover, connections among the scattering amplitudes of the chi QM approach and the helicity amplitudes, as well as decay widths of resonances, are established. Possible contributions from the so-called missing resonances are investigated and found to be negligible.