42 resultados para CAR


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

论文分两部分:第一部分在参阅大量文献的基础上,对海洋声信道的特性及其对声遥控的影响做了分析和总结,并根据FSK调制信号的传播实验,对海洋声信道的一些特性进行了定性分析。第二部分详细地分析了CAR型声释放器的电路特性,并结合海洋声信道的特性及海上实验情况分析了CAR型声释放器的工作性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对大型汽车冲压模具棱边数字化的问题提出了三维自适应测量算法。为满足激光表面强化加工的特殊要求,在后续测量数据处理过程中建立了复杂棱边的简单模型,提出了六维加工轨迹划分算法,并对算法进行了加工实验验证。所提出的算法已应用到集成化柔性激光加工系统中。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are promising candidates for several technical applications ranging from nanoelectronic devices to composites. Young's modulus holds the special status in material properties and micro/nano-electromechanical systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of CNTs' behavior by applying a variety of theoretical methods. Here, three representative numerical methods, i.e., Car-Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular dynamics (MD), were applied to calculate Young's modulus of single-walled carbon nanotube (SWCNT) with chirality (3,3). The comparative studies showed that the most accurate result is offered by time consuming DFT simulation. MID simulation produced a less accurate result due to neglecting electronic motions. Compared to the two preceding methods the best performance, with a balance between efficiency and precision, was deduced by CPMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

由于光系统Ⅱ反应中心Dl/D2/Cyt b559色素蛋白复合物(PSII-RC)的红 区吸收光谱严重重叠,给其组成特性研究及光抑制分子机理研究造成 了困难,因此我们运用多种光谱分析技术配合计算机数据处理技术对 PSII-RC复合物的组成特性进行了研究,并用自己建立的方法对PSII-RC 的色素和多肽的化学计量进行了进一步确定,另外还重点研究了单线 态氧在PSII-RC光破坏中的作用,据此提出新的PSD[-RC光抑制分子机 理。主要结果如下: 1.用反相HPLC外标法测定我们制备的色谱纯PSR-RC样品的色素化 学计量结果为Chl:Pheo:Car= 6:2:2。我们发现,当PSII-RC中存在微量CP47 时,Chl: Pheo的比例与CP47的含量呈正相关关系,说明较高的Chl比例 可能表示样品中有CP47污染。结果还表明PSII-RC中Car: Pheo的比例也与 CP47含量有关,说明CP47可影响Car在PSII-RC上的结合,这暗示CP47可 能结合Car,或者CP47对PSII-RC上Car的结合位点有影响,这一推测对阐 明CP47的功能有一定启发作用。 2.建立了一种估算PSII-RC多肽化学计量的理论计算方法,即利用计 算机统计PSII-RC中各多肽组分的不同氨基酸残基数量,以确定不同多 肽化学计量时的理论氨基酸残基组成,并与PSlI-RC的实测氨基酸残基 组成进行比较,得到所用PSII-RC样品的多肽化学计量值为D1+D2:Cyt b559-o+邮:I=2:1:1. 3.对PSII-RC的红区吸收光谱进行了高斯解析,发现680 nm附近含有 峰高和半高宽明显不同的两个高斯组分,它们对光抑制处理的响应具 有明显差别,分别表现了P680和Pheo的特征。由此可知,在680nm处除了 有P680的信号外,PSII-RC中的Pheo在这个区域也有跃迁组分。这个结果 表明光抑制进程中PSII-RC红区吸收光谱信号的下降除了P680的破坏 外,还与Pheo的破坏有关。 4.用Ste)anov关系式分析了PSII-RC色素激发态分布的平衡状态,发现 经过暗适应的PSII-RC的激发态可达到充分的平衡,光抑制处理可导致 PSIL-RC激发态平衡受到破坏。 5.用荧光发射光谱观察到PSII-RC在光抑制进程中有弱光破坏和强光 破坏两个破坏过程,前者是与色素间能量传递的色素结合状态与 取向的破坏,后者与色素本身化学结构的破坏有关。通过研究不同激发波长下的发射光谱发现Car的弱光破坏过程比Chl快,暗示Car可能的保护作用,而Pheo的破坏程度比Chl小。从发射光谱组分的光破坏时间 进程推断强光破坏过程导致的色素破坏是多步反应,验证我们小组原 先报导的PSII-RC的多步反应特性。 6.首次将磁圆二色光谱( MCD)技术应用于PSII-RC研究,发现MCD明显表现出比吸收光谱要丰富得多的光谱精细结构,同时还具有较高的灵敏度和分辨率,不经过任何解析就可直接观察到680 nm组分及其它色素组分的变化,而且PSⅡ-RC中的Car没有明显MCD信号,使PSII-RC谱 图简化,便于进一步分析。用MCD技术还观察到光抑制初期Chl从PSII- RC复合物上脱离及Pheo的光破坏现象。 7.分别用HPLC法、吸收光谱高斯解析法、荧光发射光谱分析法和MCD法共四种方法证明了PSII-RC中Pheo的光破坏,充分证实我们小组关于Pheo光破坏的报导,同时还证明Pheo的光破坏是单线态氧作用的结果。 8.给出了单线态氧参与PSII-RC色素和蛋白光破坏的直接实验证 据,即发现光抑制过程中色素和蛋白的破坏受到单线态氧的特异性清除剂的保护,用化学方法在暗中产生的单线态氧同样造成与光抑制相 似的PSII-RC各组分的损伤,由此说明单线态氧是PSII-RC光抑制过程中 的直接破坏因子。 9.提出了PSII-RC中Hiis残基光破坏的一种新的分子机理。用组氨酸残基的特异性化学修饰剂证实以前我们实验室发现的PSI[-RC组氨酸残基的光破坏,根据比较蛋白变性前后的测定结果,初步证明PSIl-RC中 受光破坏的His残基位于P680附近。我们还观察到光抑制处理后,PSII- RC表现与组氨酸残基被修饰后的样品相似的紫外吸收特征,由此提出 PSII-RC中His残基光破坏的一种分子机理,即His残基的眯唑环上的两个氮原子与其它多肽上的游离氨基在单线态氧的作用下发生反应形成酰 胺键而导致PsII-RC多肽间的共价交联,推测PSII-RC中His残基的光破坏与其蛋白的光致交联和降解有直接的因果联系。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

应用改进DEAE-Toyopearl 650S阴离子交换柱层析从高等植物菠菜(Spinacia oleracea)中分离纯化了核心天线复合物CP43和CP47。并对它们的纯度和完整性色素种类和含量,以及色素分子的结合状态进行了研究并对色素分子间的能量传递机制进行了讨论。结果如下: 1、HPLC检测结果表明:纯化的CP43和CP47均只含Chla和β-Car两种色素分子,并且,平均每分子CP43多肽含19-20分子Chla和4-5分子β-Car;而平均每分CP47则含20-21分子Chla和3-4分子β-Car。 2、以436nm和480nm激发光激发样品得到的CP43和CP47的低温荧光发射光谱的最大荧光发射峰分别位于683nm和693nm。进一步发现,CP43和CP47,在相同条件下分别以436nm和480nm激发光激发样品得到的低温荧光发射光谱经归一化后几乎完全重叠,而且400-500nm波长范围内的激发光扫描得到的三维低温荧光发射光谱沿激发轴具有较好的对应关系,表明纯化的CP43和CP47都具有较高的完整性。 3、纯化的CP43和CP47的吸收光谱的红区最大吸收峰分别位于671nm和674nm。该光区的导数光谱均分辨出偏蓝区和偏红区两个子峰,CP43的这两个子峰分别位于669nm和682nm;而CP47的两个子峰则分别位于669nm和680nm。进一步用包含这两个子峰的高斯解析参数对红区最大吸收峰进行拟合,结果证明,拟合的曲线与实测曲线几乎完全吻合,这表明,CP43和CP47均至少包含两种不同状态的Chla分子。 3.1应用不同的变性温度处理CP43,发现随变性温度的不断提高,其红区最大吸收峰的峰值逐渐减小,四阶导数光谱分辨出的两个子峰同时减小,但差光谱显示:随处理温度的不断提高,这两个组分峰值的变化并不同步进行,较低温度范围内(55℃以下)682nm吸收峰下降明显,而较高温度范围内(55℃以上),669nm吸收峰下降明显。 同时,随处理温度不断提高CP43脱辅基蛋白的结构也在不断发生变化,其变化过程明显表现出两个跃变阶段。这两个跃变阶段分别出现在40~50℃范围内和55~60℃范围内,恰与吸收光谱两个组分峰变化的转变过程相一致。这证明,CP43中分别位于669nm和682nm的不同的色谱组分即代表两种不同结合态的Chla分子,分别简称为“CP43-669”和“CP43-682”。它们在色素蛋白复合物中所处的环境不同,因而对蛋白质结构的依赖性不同,前者更高地依赖于蛋白复合物的整体构象,而后者则主要依赖于蛋白质的二级结构。 3.2 经不同的变性温度处理的CP47,其红区最大吸收峰的峰位逐渐蓝移,而吸收峰值无明显的变化,只有当处理温度提高到65℃以后,蓝移后的吸收峰值(669nm)才开始明显减小;四阶导数光谱表现为680nm吸收峰的信号逐渐下降669nm的吸收信号逐渐明显;处理减对照差光谱只观察到680nm吸收值的逐渐减少,而几乎观察不到669nm吸收值的变化。同时,随变性温度的不断提高,CP47的脱辅基蛋白的结构也发生相应的变化与CP43不同,蛋白结构变化最大的温度范围为60℃~65℃之间,但同CP47的峰位蓝移、导数光谱中680nm信号的减小,以及差光谱中680nm吸收值的减小相一致。由此认为,同CP43一样,CP47的吸收光谱中分辨出的分别位于669nm和680nm处的两个不同光谱组分亦分别代表两种不同结合状态的Chla分子,分别简称为“CP47-669”和“CP47-680”,与CP43中的相应组分对应,它们处于不同的蛋白环境中,从而对蛋白质结构变化的依赖性不同。 3.3 CP43和CP47的CD光谱表现出明显的正负双峰,表明色素分子间存在较强的激子相互作用。随变性温度的不断提高,正负CD双峰的信号逐渐减弱,变化过程与脱辅基蛋白结构的变化以及CP43-682的变化相一致,表明色素分子间的激子相互作用更高依赖于CP43-682和CP47-680。并认为CP43-682和CP47-680可能以二聚体或多聚体的形式存在,并且二聚体或多聚体的形成依赖于蛋白天然构象。而CP43-669和CP47-669则以单体的形式位于蛋白结构中相对伸展的区域。并提出:在CP43-682以CP47-680分子之间,激发能主要以激子偶合机制进行而在CP43-669,CP47-669分子间及CP43-669至CP43-682间,CP47-669至CP47-680之间激发能则主要以Foster机制进行。 4、以488nm激发光得到的CP43和CP47的共振拉曼光谱都具有全反式构型类胡萝卜素分子的四个典型特征峰由此认为CP43和CP47中的β-Car分子亦具有全反式构型;与溶于丙酮抽体物中的β-Car分子相比较,CP43和CP47中的β-Car分子的共振拉曼光谱中具有较强的960cm~(-1)的拉曼峰,表明,CP43和CP47中的β-Car分子具有扭曲的构象。 应用经归一化后的吸收光谱与荧光激发光谱相比较的办法发现CP43和CP47中存在β-Car分子和Chla分子间的能量传递其能量传递效率分别为29.8~29.9%和52.3~56.9%。这表明,在正常条件下,CP47中β-Car分子和Chla分子间的能量传递效率远大于CP43。此外,当选用蛋白结构变化最明显的热变性温度处理样品后,发现,不论CP43还是CP47中β-Car与Chla分子间的能量传递效率大大降低,表明,这两种色素分子间的能量传递严格依赖于蛋白复合物的天然构象,并认为,正常条件下,CP43和CP47内β-Car与Chla分子间的空间距离较近,可能不大于10A,CP43和CP47相比较,CP47内这两种色素分子间的距离更近。并进一步提出,在CP43和CP47中,β-Car到Chla分子间的能量传递最大可能以Dexter的电子交换机制进行。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从菠菜叶绿体中分离提纯PSI颗粒及其捕光天线色素蛋白复合物LHCI,对其光谱特性进行分析。对PSI颗粒中色素和蛋白的光破坏进程,并对外加组氨酸、Triton,以及温度对PSI颗粒光破坏的影响等进行了比较系统的研究,以探讨PSI光破坏的机理。其主要结果如下: 1. 对PSI颗粒和LHCI色素蛋白复合物的荧光光谱的研究,发现PSI中Chlb所吸收的光能主要传递给LHCI中的“长波组分”(吸收波长大于P700的Chla)。 2. 在PSI颗粒光破坏进程的研究中发现,Chla中吸收波长较长的组分首先发生光破坏;位于PSI颗粒外围的LHCI上的Chlb,也容易受到光破坏;Car先于Chlb发生光破坏。在光照处理过程中,PSI的天线色素蛋白复合物LHCI多肽降解程度大于反应中心多肽组分(PsaA,PsaB)的降解,其中LHCI-680首先由于光破坏而发生降解。PsaD也是容易受到光破坏而发生降解的一个多肽。另外,还发现在长时间光照后有蛋白聚合现象发生。 3. 在PSI颗粒中外加单线态氧的淬灭剂组氨酸,分析不同光强光照处理过程中组氨酸对PSI颗粒中色素和多肽光破坏的保护作用,发现外加组氨酸对强光照(2300μEm-2s-1)引起的叶绿素光吸收减少和CD信号减弱的有效抑制表现出一个明显的延迟期,但对强光诱导的荧光产量下降的效应却能立即表现出来;在强光照前期和弱光照(300μEm-2s-1)条件下,组氨酸不能抑制PSI颗粒的光吸收下降。另外,外加组氨酸除了对反应中心多肽有光保护作用以外,对PSI中其它多肽也有显著的保护作用。 4. 用不同浓度的Triton处理PSI颗粒,发现较低浓度的Triton可以增大叶绿素的光吸收和PSI颗粒的荧光产量,而不对PSI颗粒的多肽组成造成影响;当Triton浓度达到一定的程度时,虽然不会影响PSI颗粒的多肽组成,但是会使其光吸收减少,荧光产量下降;而当Triton浓度过高时,PSI颗粒的多肽会发生降解现象,同时其光吸收和荧光产量也迅速下降。Triton浓度较低时,PSI颗粒光破坏的程度随Triton浓度的增大而增大,当Triton浓度增大到一定的程度时,PSI颗粒的光破坏程度同Triton浓度不再呈明显的正相关。 5. 对PSI颗粒进行不同温度的热处理,其结果表明:温度较低(20 ℃~40 ℃)的热处理对PSI颗粒的多肽和叶绿素光吸收的影响程度很小,照光后不同温度热处理过的PSI颗粒光吸收减少和多肽降解的程度相近;温度较高(50 ℃~60 ℃)的热处理会对PSI颗粒的结构产生影响,使之稳定性减小,对光处理更敏感;温度更高(大于70 ℃)的热处理会破坏PSI颗粒的结构,引起多肽组分的降解。另外,不同的多肽对热处理的敏感性显著不同。 6. 低温(4 ℃)和常温(20 ℃)下PSI颗粒光破坏的比较发现,室温下PSI颗粒的光破坏程度明显大于低温下光破坏的程度,表明光处理过程中温度会影响到PSI颗粒光破坏的程度。 通过上述的研究结果,分析了PSI颗粒光破坏过程中色素和蛋白的变化及其外界因子的影响,对PSI颗粒光破坏的机制进行了初步的探讨。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从菠菜叶绿体中分离纯化出PSII内周天线CP43及CP47色素蛋白复合物。通过利用光谱学手段 (吸收光谱、荧光光谱、CD光谱等)及生化技术(HPLC和电泳等),研究了酸、碱、强光及高温等理化因子对其结构和功能的影响。结果如下: 1:酸和碱处理对CP43和CP47结构和功能的影响 1),酸、碱处理均使CP43和CP47红区主峰吸收降低,蓝区Soret带吸收降低,Soret带的附属带吸收增加,红区及蓝区吸收主峰均蓝移。酸处理时在542 nm及510 nm附近出现Pheo a的吸收峰,碱性处理时出现642 nm的吸收峰。酸、碱处理后CP43及CP47中绝大部分色素仍然结合在脱辅基蛋白上, 吸收光谱的变化源于结合态的色素而非游离色素。酸性条件下Chl a受到破坏变为Pheo a 使CP43及CP47失绿, 但Pheo a仍牢固地结合在脱辅基蛋白上,使CP43及CP47出现Pheo a的吸收峰。碱性条件下虽然绝大部分色素也结合在脱辅基蛋白上,但色素与蛋白之间的亲和力减弱,使其在进行PAGE电泳时从蛋白质上脱落。碱性条件下642 nm吸收峰的出现是OH- 与Chl a之间相互作用的结果,它需要蛋白质次级结构的变化,当蛋白质次级结构保持完整时或Chl a 分子被尿素分子包围时这种作用受到抑制。碱性条件下CP43及CP47中642 nm吸收峰的出现取决于Chl a与OH- 的相对量,同样在进行PAGE电泳时CP43中Chl a与脱辅基蛋白的分离也取决于Chl a与OH- 的相对量。 2),CP43中β-Car与Chl a之间的能量传递易于受碱的干扰,而在CP47中易于受酸的干扰。酸对CP43和CP47蛋白质次级结构的影响远小于碱的影响。酸和碱都显著地影响了Chl a分子所处的微环境并干扰了Chl a分子之间的激子相互作用。 3), 酸和碱以不同的方式影响CP43和CP47的光吸收、能量传递及蛋白质的次级结构。H+ 可以在不破坏蛋白质次级结构的情况下渗透到色素蛋白内部与Chl a反应而产生Pheo a,同时使β-Car和Chl a (或Pheo a) 之间的相对位置发生变化, 它们之间的能量传递受到干扰。OH- 首先破坏CP43和CP47中的氢键, 引起蛋白质解折叠, 使屏蔽在蛋白质内部的Chl a 暴露,进而与暴露的Chl a作用而将其皂化为叶绿素酸酯。随着蛋白质的去折叠, 其远紫外CD活性丧失, 色素所处的微环境受到干扰, β-Car和Chl a (或Chl a酸酯) 之间的相对位置发生改变, 因此β-Car和Chl a ( 或Chl a酸酯) 之间的能量传递也受到干扰。 4),酸或碱处理使CP43和CP47中Chl a 在进行HPLC时洗脱时间和洗脱峰面积发生改变, 但β-Car洗脱时间和洗脱峰的面积相对稳定。意味着酸碱处理并不破坏CP43及CP47中的β-Car。 2.强光照射对CP43结构和功能的影响 强光(1000 μmol E./m2.s)可以引起CP43中Chl a的漂白及蛋白质的降解,这种作用明显地被连二亚硫酸钠抑制。同样条件下,β-Car 的光吸收几乎不受光破坏的影响。 3.高温处理对CP43、CP47及其它PSII亚基降解的影响 用从菠菜叶片中分离出的PSII、OECC(放氧核心复合体)、去除33 kDa的OECC、RC-CP47(结合有CP47的反应中心复合体)、RC(反应中心复合体)、CP43及CP47等多亚基或单亚基色素蛋白复合体,研究这些复合体中各蛋白亚基在高温时的降解情况。结果发现PSII各蛋白亚基降解对温度的敏感性显著不同: CP43、D2、CP29、LHCII >D1、CP47 >> PsbO、PsbP、PsbQ及Cytb559 (α亚基)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本部分研究以菠菜和水稻为材料,比较系统的研究了高温对类囊体膜、PSII颗粒、PSII外周捕光天线LHCII、PSII核心复合物和PSII反应中心等不同层次膜蛋白结构与功能的影响,以探讨高温对光合膜蛋白的伤害机理。其主要结果如下: 1.类囊体膜结构与功能的完整性对于维持PSII的结构与功能在高温胁迫下的稳定性具有重要作用。当类囊体膜的完整性受到破坏,当与PSI有关的一系列保护机制失去作用时,PSII对高温胁迫的敏感性会大大加强。 2.虽然PSI的功能在高温下保持相对稳定,但PSI的结构在高温胁迫下并不稳定。本文的研究发现LHCI对高温非常敏感,在中度高温胁迫下就开始降解,但PSI的核心在高温下比较稳定,所以PSI介导的电子传递活性仍然维持在较高水平。 3.高温胁迫会对PSII的结构和功能产生多重破坏。这个过程首先应该是放氧复合体的失活:其次是反应中心的可逆失活;接下来可能是核心天线CP43和CP47的失活导致捕光天线同反应中心的能量传递受阻;再下来是QA到QR电子传递的受阻、反应中心的不可逆失活、捕光效率下降等过程;最后是大范围色素蛋白的变性和失活,PSII的结构和功能遭到彻底破坏。 4.高湿胁迫下Fo显著升高,Fo的升高的原因可能源于少量捕光天线同反应中心的分离和反应中心的失活。 5.高等植物体的类囊体膜中存在多种Chla和Chlb的光谱吸收形式。这些代表不同的光谱吸收形式的组分在高温胁迫下表现出不同程度的降解,其中C678 和C684组分降解最快。这些不同的光谱吸收形式组分可能以不同的比例存在于每一种色素蛋白复合物中。 6.LHCII的结构与功能对于维持PSII结构与功能的热稳定性具有重要作用,LHCII完全缺失的水稻突变体VG28及分离纯化的PSII核心复介物都人大增强了对高温的敏感性。但一种LHCII减少的水稻突变体249-Mutant,反而增加了PSII的热稳定性,进一步的研究表明,类囊体膜中 LHCII本身含量的多少对PSII热稳定性的影响不足决定性的,关键性因素可能主要取决于 LHCII含量改变而引起的膜脂组成和膜脂不饱和程度的改变,以及由膜脂变化引起的PSII放氧复合体结构与功能的变化。 7.本研究首次发现,高温可以促使分离纯化的LHCII的红区吸收光谱发生显著红移,而680nm处的荧光发射降低,长波长荧光组分大大增强。绿胶电泳表明中度高温胁迫能够诱导LHCII产生寡聚体,这种寡聚体可能在调节能量耗散方面具有重要生理意义:而严重高温胁迫下LHCII倾向于聚合产生大分子的非活性聚集体。 8.分离纯化的反应中心对高温非常敏感,各种色素的结构和功能在轻度高温胁迫下就开始受到破坏和抑制,各种色素变性和降解的顺序由快到慢是:P680>Pheo>Chla>β-Car。反应中心的多肽组分在高温胁迫下显著减少,Dl和D2减少的原因可能归因于高温胁迫导致大分子聚合物的产生,D2的减少显著快于D1的减少。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞色素b6f蛋白复合体(Cyt b6f)是光合链中连接两个光系统(PSII 和PSI)的中间电子载体蛋白复合物,其主要的生理功能是催化电子传递和质子跨膜转移,形成跨膜质子电化学梯度,为ATP的合成提供能量,在光合作用光能转化过程中占有很重要的地位。细菌和莱茵衣藻Cyt b6f的晶体结构已于2003年底获得了近原子水平的解析,但有关该复合物中两种色素(Chl a和β-Car)的生理功能及其机理尚无明确的解释。预计它们将成为今后几年的研究热点,因为揭示Cyt b6f蛋白复合体中Chl a和β-Car分子的生理功能对于进一步阐明光合作用高效转能及其调控的分子机理具十分重要的意义。鉴于目前尚未见到海洋绿藻Cyt b6f的报道,本文以海洋绿藻—假根羽藻(Bryopsis corticulans)类囊体膜上的Cyt b6f蛋白复合体为对象,对其中的类胡萝卜素的分子结构与生理功能进行了比较系统地研究。 首先,我们改进了原用于菠菜类囊体膜Cyt b6f的分离、纯化流程,在原流程的基础上增加了一次2 mol/L NaBr洗膜,彻底地去除了膜表面的杂蛋白;还调整了第二次硫酸铵分级沉淀时的饱和度,并将38-45%饱和度下的沉淀物确定为需要收集的Cyt b6f制剂。采用此改进的流程,我们首次从假根羽藻类囊体膜中分离纯化了高活性、高纯度的Cyt b6f制剂。SDS-PAGE分析的结果显示该制剂的4个多肽亚基 (Cytf 、Cyt b6 、Rieske[Fe-s]及亚基IV)的表观分子量分别为34.8、24.0、18.7和16.7 kD;Cyt b6 / f 比值接近2.0, 其纯度值为9.9 nmol cyt f/mg;其催化电子传递的活性 (C10-PQH2→PC)为73 e/s。HPLC 和共振拉曼光谱分析表明,假根羽藻Cyt b6f中的类胡萝卜素为α-胡萝卜素分子,它是一种在Cyt b6f中尚未报道过的类胡萝卜素。定量分析表明,每个假根羽藻Cyt b6f单体中全反式(all-trans)和9顺式(9-cis)α-胡萝卜素的含量分别为0.2和0.7个分子,另外还含有1.2分子的Chl a。CD光谱分析表明该9-cis-α-胡萝卜素处在一个不对称的蛋白环境中。TLC分析表明该制剂是一种缺脂的Cyt b6f蛋白复合体。 采用稳态荧光激发光谱,时间分辨吸收光谱及Chl a的光破坏实验对假根羽藻Cyt b6f中α-胡萝卜素的功能进行了研究。结果表明,Cyt b6f中α-胡萝卜素可以将它吸收的光能传递给Chl a,其能量传递效率为62.4%,提出α-胡萝卜素分子与Chl a分子之间的单线态能量传递是遵从Föster 机制进行的;α-胡萝卜素分子对Chl a分子有一定的光保护作用,这种保护作用是通过清除单线态氧来实现的。另外还发现Cyt b6f中的Chl a分子可能与其周围的氨基酸残基存在相互作用,认为这是其进行自我光保护的一种方式。 此外,还采用HPLC研究了光和暗交替对假根羽藻Cyt b6f中α-胡萝卜素构型的影响,并对假根羽藻Cyt b6f选择结合α-胡萝卜素的原因进行了初步的分析。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光系统II(PSII)是存在于类囊体膜中的多亚基色素蛋白复合物,是吸收光能、催化光诱导水裂解释放氧气、质子和电子的重要机构。它在体内的基本单位是由外周天线蛋白(LHCII)与PSII核心复合物结合形成的PSII-LHCII超分子复合物,这一结构保证了LHCII吸收的能量能够快速有效的传递到PSII反应中心(RC),进行原初光化学反应。 本论文分为两部分:1、利用捕光色素蛋白复合物(LHCII)与PSII核心复合物在以DGDG、PG、SQDG三种类囊体膜脂形成的脂质体中重组的方法,研究了LHCII与PSII在脂膜上结构与功能的相互作用;2、通过研究光破坏和色素置换对PSII RC的影响,探讨了RC中不同色素的功能。主要结果如下: 1、LHCII与PSII核心复合物的蛋白脂质体研究: 将OECC(粗提核心复合物)、pdOE(纯化核心复合物)、LHCII(大量天线)制剂分别与脂质体重组并研究了其光谱性质。LHCII在与脂质体重组前表现出典型的聚集态光谱特征,重组后吸收和荧光发射峰发生明显蓝移;LHCII、OECC和pdOE三种蛋白脂质体与重组前的样品相比荧光发射强度增加;表明脂环境影响了色素蛋白复合物的聚集状态以及色素和蛋白之间的相互作用。 OECC和pdOE分别与LHCII在脂质体中重组,得到两种重组蛋白(LHCII-OECC和LHCII-pdOE)脂质体,用冰冻蚀刻电镜技术和低温荧光光谱的方法研究其结构和功能特征。LHCII和核心复合物(OECC或pdOE)结合形成PSII-LHCII重组颗粒,并在脂质体中均匀排布,阻止了LHCII晶格状结构的形成。重组蛋白脂质体的吸收光谱既有LHCII的吸收特征,又有核心复合物的特征吸收峰,但低温荧光光谱的主要发射峰是核心复合物的特征峰(684 nm-685 nm),而不是LHCII的特征峰(680 nm);而且激发不同色素得到的荧光发射光谱基本一致,这些结果证明LHCII吸收的能量传递到了核心复合物中,在重组蛋白脂质体中不同色素蛋白复合物在结构和功能上都实现了相互偶联。 通过对OECC或pdOE与LHCII重组形成的蛋白脂质体放氧或DCPIP光还原活性的检测研究了PSII光化学活性特征。LHCII和核心复合物(OECC或pdOE)的重组蛋白脂质体与单独核心脂质体相比,在强光和弱光下光化学活性都明显提高。这从另一个角度证明了核心复合物与LHCII的功能偶联,LHCII的结合使捕光截面积增大,从而使PSII光化学活性增加。 用77K飞秒时间分辨荧光光谱分析了几种蛋白脂质体的能量传递和捕获情况。LHCII、OECC和pdOE三种蛋白脂质体的主要荧光衰减组分分别是670 ps(发射峰在680 nm)、650 ps(发射峰在690 nm)和570 ps(发射峰在685 nm)。LHCII-OECC和LHCII-pdOE脂质体的主要衰减组分分别是940 ps(发射峰在690 nm)和840 ps(发射峰在685 nm),并且出现了一个在核心复合物脂质体和LHCII脂质体中没有的40 ps组分,可以推测,这是LHCII和核心复合物之间达到平衡的时间组分,比激发态衰减的平均寿命要快得多,因此支持了PSII的trap-limited激发能衰减动力学模型。此外,可以看到天线的增大使Chl a荧光衰减的寿命延长,这一特性可能与PSII的光保护机制有关。 LHCII和OECC、LHCII和pdOE在脂质体中都成功的实现了重组,而且在结构和功能上没有明显差异;表明小天线以及23 kDa、17 kDa蛋白可能不是LHCII和核心复合物结合及能量传递所必需的。 2、受体侧光破坏和色素置换对PSII RC的影响: 在800 μmol.m-2 .s-1光照和无外加电子受体、供体的情况下,研究了PSII RC色素的受体侧光破坏情况。Chl a、Pheo和β-Car的光漂白几乎同时发生,其中在680 nm吸收的色素破坏最为显著,670 nm吸收的外周Chl比其他色素更加稳定。荧光发射强度呈先升高后降低的趋势,最大发射峰位逐渐蓝移,表明色素之间的能量传递受到破坏。用β-Car的主要吸收波长488 nm和514.5 nm激发得到两组谱带峰位和强度不同的拉曼光谱,表明在PSII RC中存在两个光谱性质不同的β-Car。光破坏过程中两组谱带的位置和带宽都没有明显变化,表明β-Car的光保护机制不涉及自身构象的变化。 将PSII RC与Cu-Chl a进行色素置换,得到了与Cu-Chl重组的RC(Cu-Chl-RC),含有0.5 Cu-Chl/2Pheo。与对照RC(按同样方式与Chl a置换的RC)和天然RC相比,Cu-Chl含量增加而Chl含量减少,660 nm的吸收增加而670 nm吸收降低,因此推测是外周Chl被替换。色素置换过程对RC的多肽组分及大部分的P680活性没有影响,CD光谱的变化也很小,表明产生CD信号的色素和蛋白环境也没有受到明显影响。但是Cu-Chl-RC的荧光发射强度明显降低,最大发射峰蓝移且峰形发生变化,Cu-Chl可能在重组RC中作为激发态的淬灭剂,阻碍了色素之间的能量传递。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CP43和CP47是PSII中位于类囊体膜上的两种内周天线色素蛋白复合体,它们都是由六个跨膜的α-螺旋和五个膜外环组成。CP43和CP47的主要功能是把光系统II(PSII)外周天线色素蛋白复合体(LHCII)吸收的能量传给反应中心(RC),从而引起光化学反应。因此,研究CP43和CP47的结构与功能对于揭示植物光合作用高效吸能、传能的分子机理具有重要意义。由于CP43和CP47的分离纯化比较困难,所以相对于其它的光合膜蛋白来说,人们对CP43和CP47的研究比较少。在本文中,我们在分离、纯化CP43和CP47的基础上,采用多种光谱学和波谱学技术对CP43和CP47在GuHCl和高温作用下的变性过程及其结构与功能的变化规律进行了比较深入的研究,获得了如下结果: 1. CP43和CP47膜外区的结构特点及盐酸胍(GuHCl)引起的变性研究 我们用荧光光谱、园二色(CD)光谱研究了GuHCl引起CP43和CP47的变性过程及其膜外区的结构特点。研究发现:CP43和CP47的膜外区具有一定的有序结构,而不是一种没有规则的伸展状态;和CP43相比,CP47的三级结构及Chl a的微环境对GuHCl更敏感。在GuHCl作用下,从β-Car到Chl a的能量传递变化和三级结构的变化密切相关,而与二级结构变化的相关性则较小;和大多数水溶性蛋白不一样,CP43和CP47对GuHCl变性有一定的抵抗力,而且其变性过程不表现为二态过程,这些都是膜蛋白的特点。 2 CP43和CP47中与芳香族氨基酸有关的能量传递研究 我们用吸收光谱、荧光光谱并参照PSII的3.5 Å的晶体结构分析结果研究了CP43和CP47中与芳香族氨基酸有关的能量传递。发现:和水溶性蛋白不一样,CP43和CP47中的酪氨酸(Tyrs)并不能有效的把其能量传给色氨酸(Trps);CP43和CP47中的芳香族氨基酸能通过Föster机制和Dexter机制把其能量传给Chl a,并且CP47中的传递效率要大于CP43;在CP47中Föster机制是芳香族氨基酸和Chl a之间能量传递的主要方式,而在CP43中Dexter机制则是主要方式。这些结果也暗示了,太阳光中的紫外辐射对植物来说除了其伤害作用以外也有一定的益处。 3 GuHCl诱导CP43和CP47变性的太赫兹(THz)光谱研究 THz时域光谱技术(THz-TDS)是研究分子构型状态的一个新工具。近年来,已被应用于物理或化学分子的研究中。我们首次把这个技术应用到光合膜蛋白CP43和CP47的GuHCl变性研究上。研究发现,在小于1.5 THz时,THz吸收光谱强度随着频率的增加而增加可以看作是蛋白质变性的标志。在GuHCl作用下频域光谱中出现的1.8 THz峰应来源于Chl a和GuHCl之间的相互作用。实验结果表明,THz光谱是区分蛋白分子的不同构型状态以及监测蛋白变性过程的有力工具。 4 CP43热变性的傅立叶变换红外光谱和THz光谱研究 我们用傅立叶变换红外光谱技术(FT-IR)、SDS聚丙稀凝胶电泳(SDS-PAGE)和THz光谱技术对CP43的热变性过程进行了研究。结果表明,在高温处理下,CP43的二级结构发生了变化,且其跃变点发生在59℃。随着温度的逐渐升高,CP43先发生凝集,接着又发生降解;CP43的低频振动模随着温度的升高和分子量的减小也发生变化。我们还证实THz光谱技术在监测膜蛋白的热变性时既有它的优越性,也存在一些不足之处。这些结果为THz-TDS技术在生物样品上的应用提供了基本的资料,并完善了相关的理论。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic variation of 31 blood protein loci in 236 cattle from eight South China populations (including mithan, Bos frontalis) and a Holstein population was investigated by means of horizontal starch gel electrophoresis. Thirteen loci (ALB, CAR, Hb-b, Np, PGM, Amy-I, PEP-B, AKP, 6PGD, Cp, Pa, EsD, and TF) were found to be polymorphic. The comparison of average heterozygosities (H) shows that all the native cattle embrace a rich genetic diversity Our results on protein polymorphism suggest that cattle in China originated mainly from Bos indicus and Bos taurus; Xuwen, Hainan, Wenshan, and Dehong cattle and the Dehong zebu are close to zebu-type cattle, and Diqing and Zhaotong cattle are close to the taurine. The mithan was very different from other native cattle, and we suggest that its origin was complicated and may be influenced by other cattle species.