278 resultados para Burst size
Resumo:
A previously unknown cyanophage, PaV-LD (Planktothrix agardhii Virus isolated from Lake Donghu), which causes lysis of the bloom-forming filamentous cyanobacterium P. agardhii, was isolated from Lake Donghu, Wuhan, China. PaV-LD only lysed P. agardhii strains isolated from Lake Donghu and not those isolated from other lakes. The PaV-LD particle has an icosahedral, non-tailed structure, ca. 70 to 85 nm (mean +/- SD = 76 +/- 6 nm) in diameter. PaV-LD was stable at freezing temperature, but lost its infectivity at temperatures >50 degrees C. Lysis of host cells was delayed about 3 d after the PaV-LD treatment with chloroform, and the virus was inactivated by exposure to low pH (<= 4). The latent period and burst size of the PaV-LD were estimated to be 48 to 72 h and about 340 infectious units per cell, respectively. The regrowth cultures of surviving host filaments were not lysed by the PaV-LD suspension. To our knowledge, this is the first isolation and cultivation of a virus infectious to the filamentous bloom-forming cyanobacterium Planktothrix from a freshwater lake.
Resumo:
Lake Donghu is a typical eutrophic freshwater lake in which high abundance of planktonic viruses was recently revealed. In this study, seasonal variation of planktonic viruses were observed at three different trophic sites, hypertrophic, eutrophic, and mesotrophic regions, and the correlation between their abundances and other aquatic environmental components, such as bacterioplankton, chlorophyll a, burst size, pH, dissolved oxygen, and temperature, was analyzed for the period of an year. Virioplankton abundance detected by transmission electron microscope (TEM) ranged from 5.48 x 10(8) to 2.04 x 10(9) ml(-1) in all the sites throughout the study, and the high abundances and seasonal variations of planktonic viruses were related to the trophic status at the sampled sites in Lake Donghu. Their annual mean abundances were, the highest at the hypertrophic site (1.23x10(9) ml(-1)), medium at the eutrophic site (1.19x10(9) ml(-1)), and the lowest at the mesotrophic site (1.02x10(9) ml(-1)). The VBR (virus-to-bacteria ratio) values were high, ranging from 49 to 56 on average at the three sampled sites. The data suggested that the high viral abundance and high VBR values might be associated with high density of phytoplankton including algae and cyanobacteria in this eutrophic shallow lake, and that planktonic viruses are important members of freshwater ecosystems.
Resumo:
The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micromechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory.
Resumo:
Reliable turbulent channel flow databases at several Reynolds numbers have been established by large eddy simulation (LES), with two of them validated by comparing with typical direct numerical simulation (DNS) results. Furthermore, the statistics, such as velocity profile, turbulent intensities and shear stress, were obtained as well as the temporal and spatial structure of turbulent bursts. Based on the LES databases available, the conditional sampling methods are used to detect the structures of burst events. A method to deterimine the grouping parameter from the probability distribution function (pdf) curve of the time separation between ejection events is proposed to avoid the errors in detected results. And thus, the dependence of average burst period on thresholds is considerably weakened. Meanwhile, the average burst-to-bed area ratios are detected. It is found that the Reynolds number exhibits little effect on the burst period and burst-to-bed area ratio.
Resumo:
The kinetic studies of the acrylic octadecyl ester and styrene polymerization in microemulsion systems, (1) cetyl pyridine bromide (CPDB)/t-butanol/styrene/water; (2) CPDB/t-butanol/toluene + acrylic octadecyl ester (1:1, w/v)/ water; (3) cetyl pyridine bromide/styrene/formamide, were made by using dynamic laser light scattering techniques (DLS). The mechanisms of nucleation of latex particles were discussed. The most possible nucleation location of the styrene and acrylic octadecyl ester microlatex particles in aqueous microemulsion system is in aqueous phase via homogeneous nucleation. Meanwhile, parts of microlatex particles are possibly produced via swollen micelles (microemulsions) and monomer droplets nucleation. On the other hand, the most possible nucleation location of the styrene microlatex particles in nonaqueous microemulsion system is inside monomer droplets. The relationship between the amount of monomer and the size of microlatex was also investigated. It has been found that the size of microlatex particles could be controlled by changing the amount of monomer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00
Resumo:
In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).
Resumo:
Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval.
Resumo:
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.
Resumo:
We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.
Resumo:
Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
Resumo:
In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.