19 resultados para Branch libraries.
Resumo:
A new 2-D quality-guided phase-unwrapping algorithm, based on the placement of the branch cuts, is presented. Its framework consists of branch cut placing guided by an original quality map and reliability ordering performed on a final quality map. To improve the noise immunity of the new algorithm, a new quality map, which is used as the original quality map to guide the placement of the branch cuts, is proposed. After a complete description of the algorithm and the quality map, several wrapped images are used to examine the effectiveness of the algorithm. Computer simulation and experimental results make it clear that the proposed algorithm works effectively even when a wrapped phase map contains error sources, such as phase discontinuities, noise, and undersampling. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new 2-D quality-guided phase-unwrapping algorithm, based on the placement of the branch cuts, is presented. Its framework consists of branch cut placing guided by an original quality map and reliability ordering performed on a final quality map. To improve the noise immunity of the new algorithm, a new quality map, which is used as the original quality map to guide the placement of the branch cuts, is proposed. After a complete description of the algorithm and the quality map, several wrapped images are used to examine the effectiveness of the algorithm. Computer simulation and experimental results make it clear that the proposed algorithm works effectively even when a wrapped phase map contains error sources, such as phase discontinuities, noise, and undersampling. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Largemouth bronze gudgeon (Coreius guichenoti) is a medium-sized fish endemic from the upper Yangtze River of China and its survival is threatened by the construction of the Three Gorges Dam. This study reports 20 new polymorphic microsatellites from a repeat-enriched genomic library with a mean number allele of 5.2, and observed and expected heterozygosities ranging from 0.035 to 1, and from 0.13 to 0.917, respectively. In a cross-species amplification test, nine of the 37 tested loci were found to be also polymorphic in a congeneric species, brass gudgeon (C. heterodon). In addition, other four loci from common carp (Cyprinus carpio) were also polymorphic in C. guichenoti. Out of these 24 polymorphic microsatellites, only three loci significantly deviated from Hardy-Weinberg equilibrium in the sampled population (P < 0.0025), and all pairwise tests for linkage disequilibrium among loci were nonsignificant after applying sequential Bonferroni correction (P > 0.0026). These novel microsatellites provide sufficient levels of polymorphism for studies on population genetics and conservation in C. guichenoti and its related species.
Resumo:
A novel Y-branch based monolithic transceiver with a superluminescent diode and a waveguide photodiode (Y-SDL-PD) is designed and fabricated by the method of bundle integrated waveguide (BIG) as the scheme for monolithic integration and angled Y-branch as the passive bi-directional waveguide. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10mW at 120mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than 1 dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x 8 degrees, resulting in good fibre coupling.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
A dynamic dc voltage band was found emerging from each sawtooth-like branch of the current-voltage characteristics of a doped GaAs/AlAs superlattice in the transition process from static to dynamic electric-field domain formation caused by increasing the sample temperature. As the temperature increases, these dynamic dc voltage bands expand within each sawtooth-like branch, squeeze out the static regions, and join up together to turn the whole plateau into dynamic electric-field domain formation. These results are well explained by a general analysis of stability of the sequential tunneling current in superlattices. (C) 1999 American Institute of Physics. [S0003-6951(99)04443-5].
Resumo:
We have developed a novel InP-based, ridge-waveguide photonic integrated circuit (PIC), which consists of a 1.1-um wavelength Y-branch optical waveguide with low loss and improved far field pattern and a 1.3-um wavelength strained InGaAsP-InP multiple quantum-well superluminescent diode, with bundle integrated guide (BIG) as the scheme for monolithic integration. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10 mW at 120 mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than I dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x8 degrees, resulting in good fiber coupling. The compactness, simplicity in fabrication, good superluminescent performance, low transmission loss and estimated low coupling loss prove the BIG and Y-branch method to be a feasible way for integration and make the photonic integrated circuit of Y-branch and superluminescent diode an promising candidate for transmitter and transceiver used in fiber optic gyroscope.
Resumo:
A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.
Resumo:
The inelastic component of the key astrophysical resonance (1(-), E-x=6.15 MeV) in the O-14(alpha,p)F-17 reaction has been studied by using the resonant scattering of F-17+p. The experiment was done at REX-ISOLDE CERN with the Miniball setup. The thick target method in inverse kinematics was utilized in the present experiment where a 44.2 MeV F-17 beam bombarded a similar to 40 mu m thick (CH2)(n) target. The inelastic scattering protons in coincidence with the de-excited 495 keV gamma rays have been clearly seen and they are from the inelastic branch to the first excited state in F-17 following decay of the 1(-) resonance in Ne-18. Some preliminary results are reported.
Resumo:
A high-throughput screening system for secondary catalyst libraries has been developed by incorporation of an 80-pass reactor and a quantified multistream mass spectrometer screening (MSMSS) technique. With a low-melting alloy as the heating medium, a uniform reaction temperature could be obtained in the multistream reactor (maximum temperature differences are less than 1 K at 673 K). Quantification of the results was realized by combination of a gas chromatogram with the MSMSS, which could provide the product selectivities of each catalyst in a heterogeneous catalyst library. Because the catalyst loading of each reaction tube is comparable to that of the conventional microreaction system and because the parallel reactions could be operated under identical conditions (homogeneous temperature, same pressure and WHSV), the reaction results of a promising catalyst selected from the library could be reasonably applied to the further scale-up of the system. The aldol condensation of acetone, with obvious differences in the product distribution over different kind of catalysts, was selected as a model reaction to validate the screening system.
Resumo:
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.