24 resultados para Binge eating disorder
Resumo:
The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.
Resumo:
Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.
Resumo:
An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional deficits manifested in some children diagnosed with this disorder. In the current study, we evaluated ADHD subgroups defined by the presence or absence of the 7-repeat allele of the DRD4 gene, using neuropsychological tests with reaction time measures designed to probe attentional networks with neuroanatomical foci in D4-rich brain regions. Despite the same severity of symptoms on parent and teacher ratings for the ADHD subgroups, the average reaction times of the 7-present subgroup showed normal speed and variability of response whereas the average reaction times of the 7-absent subgroup showed the expected abnormalities (slow and variable responses). This was opposite the primary prediction of the study. The 7-present subgroup seemed to be free of some of the neuropsychological abnormalities thought to characterize ADHD.
Resumo:
Although the complete genome sequences of over 50 representative species have revealed the many duplicated genes in all three domains of life(1-4), the roles of gene duplication in organismal adaptation and biodiversity are poorly understood. In addition,
Resumo:
Physiological functions of human genes may be studied by gene-knockout experiments in model organisms such as the mouse. This strategy relies on the existence of one-to-one gene orthology between the human and mouse. When lineage-specific gene duplication occurs and paralogous genes share a certain degree of functional redundancy, knockout mice may not provide accurate functional information on human genes. Angiogenin is a small protein that stimulates blood-vessel growth and promotes tumor development. Humans and related primates only have one angiogenin gene, while mice have three paralogous genes. This makes it difficult to generate angiogenin-knockout mice and even more difficult to interpret the genotype-phenotype relation from such animals should they be generated. We here show that in the douc langur (Pygathrix nemaeus), an Asian leaf-eating colobine monkey, the single-copy angiogenin gene has a one-nucleotide deletion in the sixth codon of the mature peptide, generating a premature stop codon. This nucleotide deletion is found in five unrelated individuals sequenced, and therefore is likely to have been fixed in the species. Five colobine species that are closely related to the douc langur have intact angiogenin genes, suggesting that the pseudogenization event was recent and unique to the douc langur lineage. This natural knockout experiment suggests that primate angiogenin is dispensable even in the wild. Further physiological studies of douc largurs may offer additional information on the role of this cancer-related gene in normal physiology of primates, including humans. Our findings also provide a strong case for the importance of evolutionary analysis in biomedical studies of gene functions. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
We report a numerical analysis of various types of disorder effects on self-collimated beam in two-dimensional photonic crystal. Finite-difference time-domain (FDTD) method is used to simulate the process by using a pulse propagation technique. The position disorders along the directions parallel and perpendicular to the incidence are considered. We show that random disorder along the perpendicular direction will have a lesser effect on the performance of the dispersion waveguides than those along the parallel direction. Furthermore, the self-collimation waveguide (SCW) has new characteristics when compared with the photonic crystal line defect waveguide. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
We present studies of alloy composition and layer thickness dependences of excitonic linewidths in InGaAs/GaAs strained-layer quantum wells grown by MBE, using both photoluminescence and optical absorption. It is observed that linewidths of exciton spectra increase with indium content and well size. Using the virtual crystal approximation, the experimental data are analyzed. The results obtained show that the alloy disorder is the dominant mechanism for line broadening at low temperature. In addition, it is found that the absorption spectra related to light hole transitions have varied from a peak to a step-like structure as temperature increases. This behavior can be understood by the indirect space transitions of light holes.