142 resultados para BISMUTH-MODIFIED PT(111)
Resumo:
The hydroconversion of n-paraffins is a key reaction in hydrodewaxing of lubricating base oil. In this paper, we investigate the performance of Pt/SAPO-11 catalysts for isomerization of n-paraffins by the model compound of n-dodecane. Under this experimental condition, yields of feed isomers as well as cracking products are a function of the total n-dodecane conversion. Primary products are methylundecane while multi-brancheds and cracking products are formed in successive reactions. The result shows that the addition of Sn increases the selectivity for isomerization reaction. The most ideal experimental data for hydroconversion of n-dodecane is that the selectivity of isomerized products gets 90% when conversion of n-dodecane is 90% for the Sn-promoted Pt/SAPO-11 catalyst.
Resumo:
In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE.
Resumo:
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition Were Studied.
Resumo:
Large-scale, uniform plasmid deoxyribonucleic acid (DNA) network has been successfully constructed on 11-mercaptoundecanoic acid modified gold (111) surface using a self-assembly technique. The effect of DNA concentration on the characteristics of the DNA network was investigated by atomic force microscopy. It was found that the size of meshes and the height of fibers in the DNA network could be controlled by varying the concentration of DNA with a constant time of assembly of 24 h.
Resumo:
The enantioselective hydrogenation of ethyl pyruvate on the cinchonidine modified Pt/Al2O3 catalyst was investigated using a high-pressure reaction system with a fixed-bed reactor for the purpose to produce the,chiral product without separating the catalyst from the reaction system. The reaction was also investigated in a batch reactor for comparison. About 60% e. e. and 90% e. e. were obtained with the fixed-bed reactor and the batch reactor respectively, demonstrating the possibility for the heterogeneous asymmetric hydrogenation in the fixed-bed reactor. Some adsorbed chiral modifier, cinchonidine, can be slowly removed from the surface of Pt/Al2O3 under the continuous flow reaction, as a result, the e, e, values drops with the reaction time in the fixed-bed reactor. The enantio-selectivity is higher in the fixed-bed reactor, but lower in the batch reactor when ethanol was used as solvent than that when acetic acid as solvent. CO was used as molecular probe to characterize the adsorption of cinchonidine an the catalyst surface by IR spectroscopy, A red shift observed in IR spectra of coadsorbed CO with cinchonidine suggests that the cinchonidine adsorption is mainly through the pi -interaction with platinum surface and donating electron to the platinum surface.