252 resultados para BIOMASS DECOMPOSITION
Resumo:
l、有机质和全N在草甸土壤的不同层次之间呈现明显的差异,表现力随着土壤深度的增加,含量逐渐降低。无机N包括NH4+-N和No3--N在土层之闻的差异并没有象全N和有机质那么显著。NH4+-在表面30Cm的土壤中明显高于NO3--N的。全P在各层土壤中的含量差异并不显著,但有效p在三层土壤中表现出明显的差异,表现为随土壤深度的增加而降低。 K、Na、Ca、Mg、Fe和AI等6种金属元素的可交换成分在革甸土壤中的含量除K表现出明显的土层间的差异外,在表层30cm的土壤中并没有明显的随土壤深度变化的趋势。 有机质和全N在东灵山地区主要森林土壤中的含量以0~lOcm土层中的显著高于10~20cm的土层中的。20cm的土层中无机N中也以NH4+-为主,这与草甸土壤中的一致。全p和有效P在两个土层之间的差异并不十分显著,而以0^lOcm土层略高于10~20Cm土层的。 K、Na、Ca、Mg、Fe和AI等6种金属元素的可交换成分在不同土层间的差异以K和Ca较为明显,K和Ca在O—1Ocm的土层中要高于lO-20cm的。 森林土壤中的有机质、全N(包括NH4+-N)、全p(包括有效P)都表现为低于亚高山草甸土壤中的,主要原因是亚高山革甸分布于海拔1800cm至2300m,而主要森林类型则基本分布在海拔120m至1500m,亚高山草甸较为恶劣的气候条件明显不利于有机质的矿化,因而分解速率较低,积聚了较多的有机质.而森林土壤中较低的NH4+-N和有效P则可能是由于森林中旺盛的生命活动,尤其是微生物的活动,而大量被植物和微生物固持,因而,即使在森林土壤中有较高的矿化速率,但仍具有较低的NH4+-N和有效p的含量. 不同类型的森林土壤之间各化学成分并没有发现有明显的变化趋势,即使森林类型差异较大的落叶阔叶林和针叶林之间也并没有发现十分显著的差异,这说明各森林类型土壤之间养分特征的一致性。两种针叶林均为人工林,林龄不超过30,而在这之前推测也是以落叶阔叶林为主,森林土壤在这30年间并没有发生十分明显的变化。 在l100m至I500m之间的各种森林类型的土壤也没有表现出十分明显的与海拔高度的相关性。同一森林土壤在不同时间的采样之间,各化学成分也没有表现出明显的差异。 2、降水引起的树干茎流水分中全N的含量在降水季节的初期的含量略高于大量降水期间的。而在降水季节后期,随着每次降雨量的减少,降水间隔时间的增加,树干茎流中N的含量明显地有很大幅度的升高。NO3-N在树干茎流中的含量也同样受到了降水量的影响,表现在后期也发生显著的升高,但升高的幅度没有全N的大。受到降水量影响的元素还有S。 全p在树干茎流水分中含量随降水时间的变化,在各个树种之间有很大的差异。 其它几种元素的可交换态在茎流水分中的含量以K的含量为最高;其次是S、ca、Mg,AI在所有分析的元素中含量最低。不过,AI在降水初期(6月22日)的取样中,含量在几个树种的茎流水分样品中普遍较高,Ca和Mg也被发现有类似的情形。 穿透雨中全N的含量在降水初期略高于降水中期的,而至降水末期时又略有升高,这种格局与树干茎流水分中的具有一致性。全P、K、Ca、Mg、S.AI等包括全N及其无视成分与树干茎流中的含量的差异并不显著. 地表径流中的全N含量在去除枯枝落叶层的径流场的变化格局与树干茎流和穿透雨中的较为一致.表明这三者之间存在一定的相关性.但与未去除枯枝落叶层的径流场的径流水分中全N和NO3-N的含量并不十分一致,全N和NO3-N的含量有时较高. 取自马牙石沟流水堰口的集水区水样中全N和NO3-N的含量均变化在l~3mg/L之间;而取自南沟流水堰口的集水区水样中的全N和N03-N的含量均在l~2mg/L之间,但在这两者之间并没有十分显著的差异,说明取自两个集水区溪流水分中的全N和N03-N的含量基本一致。 3、通过对三个森林立地乔木层生物量的两次调查(相隔6年),发现尽管以辽东栎为主要优势树种的暖温带落叶阔叶混交林(91- 03)第一次调查的生物量低于辽东栋林(91 - 02)和桦木林(91 - 04)的,但在生长6年后,该立地的乔木层生物量已明显超过桦木林的,其增长速率在三个样地中为最高。 根据两次调查的结果,三个样地中出现的11种乔木树种胸径的增加可以分成两组,第一组包括北京花楸、糠椴、白桦和辽东栎,另一组则由山杨、五角枫、棘皮桦、大叶白蜡、蒙椴、黄花柳和沙涞组成。6年中,第一组树种的胸径增加量在1.O~l.4em之间,而第二组的增量在0.2~O.9cm之间,两者之间具有显著的差异。 常用的生物量预测模型包括两个因子,即胸径(D)和树高(H)。D通常可以实测得到,但H大部分只能估计得到。本研究通过比较6年前后两次树高的实际估测结果,证明用D和H共同建立的模型预测结果可能会产生较大的人为误差,建议改用D的单因子预测模型。 无论是实测结果还是树木年轮分析结果,都表明处于目前径级水平的暖温带地区分布的这几个树种还处在不断生长的过程中,随着年龄的增加,表现为胸径还有很大程度的增加,因为这些树种目前的大径级个体的年平均增加速率大于小径级的. 树木年龄与胸径的相互关系的分析结果表明,树木年龄和胸径可以很好地用饱和模型Y=a-be-cx来拟合. 4、通过近5年对辽东栎枝条( D<0.5cm)和叶片凋落物分解的观察和分析,发现辽东栎枝条的总失重率达到了43%,分解速率常数k为2.713x10-3/周,而叶的总失重率则可以达到70%,分解速率常数k为6.234xl0-3/周. 枝条分解过程中的有机质含量变化可以分为三种类型,一种是单调上升型的,如蛋白质,其含量从3.5%增加到约6%;-种是单调下降型的,如半纤维素,约从15%降低至7%;另一种则是相对变化不大,如粗纤维(包括纤维素和木质素),粗纤维的含量变化在58%±3%,木质素变化在56%±2.5%,纤维素则变化在1%~3%之间。 用Olson指数方程拟合,结果表明粗纤维、木质素和半纤维素三者的分解以半纤维素为最快,分解速率常数为5.693xl0-3/周,其次是木质素和粗纤维,分别为2.461x10-3/周和2.352xl0-3/周.而蛋白质和纤维素的拟合结果较差或根本无法拟合. 用Olson指数方程拟合的结果表明,有些元素在凋落物分解过程中可以很好地用该方程拟合,如K,Na、Mn和C,p和N,Mg,Zn,而一些元素如Ca和Cu没有取得很好的拟合效果。 几种元素在叶片凋落物分解过程过程的丢失速率也以K为最快,其它元素的顺序为,e,N,p,Na,Mn,Mg和Ca(Ca的拟合效果较差),而Cu、Zn也不能很好地用Olson指数方程拟合。 5、根据对东灵山地区6年(199l~1997)的气象观测结果,可得到该地区的年平均降水量和总降水量,用1994年分析的降水中养分含量的数据可以近似计算得东灵山地区每年通过降水进入该暖温带落叶阔叶林生态系统的几种养分输入量。同理可以计算降水输入养分在树干茎流和穿透雨中的分配,还可以计算养分从地表径流中的输出。通过对这几个水分循环的主要环节中养分输入或输出量的计算,发现每年通过降水而进入系统的养分,大部分将积累在系统中,而输出份额只占很小的一部分。 K和Mg两种养分元素在降水通过林冠和树干表面时,将产生大量的淋溶,而Ca的淋溶较小.N、P和AI则产生少量的吸附或吸收。对于S来说,淋溶和吸收或吸附作用相当,或两者都很小。 通过生物量的年平均增量和生物量中的养分含量可以计算得到每年积累在生物量中的养分量即存留量,同理可以计算年凋落物中的养分量、归还量及生物系统从土壤中吸收的养分量,每年养分的存留率.通过以上计算,发现该落叶阔叶林对养分的存留率较低,这可能是由于该落叶阔叶林森林生态系统每年具有较高的养分归还量,对于一些元素来说,还具有较高的淋溶量,尤其是K和Mg.
Resumo:
在单脉冲激波管上,研究了1,2-二氯乙烷的热裂解.实验的激波条件为:温度区间1020 K<T<1190 K, 压力: P=0.12 MPa,实验时间τ=0.5 ms;实验气体为1,2-二氯乙烷稀释于Ar气中(3.95 mmol/L).以4-甲基-1-环己烯作为对比速率法实验的内标物,用4-甲基-1-环己烯开环反应的速率常数k=1015.3exp(-33400/T) s-1,以及从其产物的浓度推定出实验温度.经激波加热后的实验气体的终产物用气相色谱分析出主要成分为C2H3Cl,指示出主要反应通道为β消去反应.如把所有产物C2H3Cl都归于β消去反应,则可推定出表观之反应速率常数k1a=5.0×1013exp(-30000/T) s-1.对于由C-Cl键断键反应引发的链反应的可能影响做了分析研究.用了一种简便分析可推知在实验的温度范围内的低端(1020 K)链反应的影响可以忽略,而在其高端(1190 K)链反应将给出10%的终产物C2H3Cl的附加浓度,获得真实的β消去反应速率常数则必须把这部分予以扣除.经过这样的校正之后,最后得到CH2ClCH2Clβ消去反应速率常数为k1c=2.3×1013exp(-29200/T) s-1.
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolutionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI approximate to 45%. Residue hydrophobicity is a feature governing residue substitution as SI >= 45%. Whereas below this SI level, residue volume is a dominant feature. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<