188 resultados para BAND
Resumo:
III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.
Resumo:
In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.
Resumo:
The dynamic localization of saturated soil is investigated by considering the influence of higher strain gradient. It is shown that the strain gradient has a significant influence on the evolution of shear band in saturated soil and that the width of shear band is proportional to the square root of the strain gradient softening coefficient. The numerical simulation is processed to investigate the influences of shear strain gradient and other factors on the evolution of shear band.
Resumo:
formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure properties of the material and the dilatancy rate, but is independent of the details of the combined stress state. This is in accordance with some separate experimental observations.
Resumo:
A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the composite with larger particles. To characterize this size-dependent deformation localization behavior of particle reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in MMCp. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We derive an explicit expression for predicting the thicknesses of shear bands in metallic glasses. The model demonstrates that the shear-band thickness is mainly dominated by the activation size of the shear transformation zone (STZ) and its activation free volume concentration. The predicted thicknesses agree well with the results of measurements and simulations. The underlying physics is attributed to the local topological instability of the activated STZ. The result is of significance in understanding the origin of inhomogeneous flow in metallic glasses. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.
Resumo:
To meet the demand of modern acoustic absorbing material for which acoustic absorbing frequency region can be readily tailored, we introduced woodpile structure into locally resonant phononic crystal (LRPC) and fabricated an underwater acoustic absorbing material, which is called locally resonant phononic woodpile (LRPW). Experimental results show that LRPW has a strong capability of absorbing sound in a wide frequency range. Further theoretical research revealed that LRPC units and woodpile structure in LRPW play an important role in realization of wide band underwater strong acoustic absorption.
Resumo:
Cladding band structure of air-guiding photonic crystal fibers with high air-filling fraction is calculated in terms of fiber shape variation. The fundamental photonic band gap dependence on structure parameters, air-filling fraction and spacing, is also investigated. The numerical results show that the band gap edges shift toward longer wavelength as the air-filling fraction is increased, whereas the relative band gap width increases linearly. For a fixed air-filling fraction, the band gap edges with respect to spacing keep constant. With this method, the simulation results agree well with the reported data. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The characteristics of the cladding band structure of air-core photonic crystal fibers with silica rings in triangular lattice are investigated by using a standard plane wave method. The numerical results show that light can be localized in the air core by the photonic band gaps of the fiber. By increasing the air-filling fraction, the band gap edges of the low frequency photonic band gaps shift to shorter wavelength.. whereas the band gap width decreases linearly. In order to make a specified light fall in the low frequency band gaps of the fiber, the interplay of the silica ring spacing and the air-filling fraction is also analyzed. It shows that the silica ring spacing increases monotonously when the air-filling fraction is increased, and the spacing range increases exponentially. This type fiber might have potential in infrared light transmission. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The m-plane GaN films grown on LiAlO2(100) by metal-organic chemical vapor deposition exhibit anisotropic crystallographic properties. The Williamson-Hall plots point out they are due to the different tilts and lateral correlation lengths of mosaic blocks parallel and perpendicular to GaN[0001] in the growth plane. The symmetric and asymmetric reciprocal space maps reveal the strain of m-plane GaN to be biaxial in-plane compress epsilon(xx)=-0.79% and epsilon(zz)=-0.14% with an out-of-plane dilatation epsilon(yy)=0.38%. This anisotropic strain further separates the energy levels of top valence band at Gamma point. The energy splitting as 37 meV as well as in-plane polarization anisotropy for transitions are found by the polarized photoluminescence spectra at room temperature. (c) 2008 American Institute of Physics.