65 resultados para Artificial groundwater recharge.
Resumo:
Vegetation cover plays an important role in the process of evaporation and infiltration. To explore the relationships between precipitation, soil water and groundwater in Taihang mountainous region, China, precipitation, soil water and water table were observed from 2004 to 2006, and precipitation, soil water and groundwater were sampled in 2004 and 2005 for oxygen-18 and deuterium analysis at Chongling catchment. The soil water was sampled at three sites covered by grass (Carex humilis and Carex lanceolata), acacia and arborvitae respectively. Precipitation is mainly concentrated in rainy seasons and has no significant spatial variance in study area. The stable isotopic compositions are enriched in precipitation and soil water due to the evaporation. The analysis of soil water potential and isotopic profiles shows that evaporation of soil water under arborvitae cover is weaker than under grass and acacia, while soil water evaporation under grass and acacia showed no significant difference. Both delta O-18 profiles and soil water potential dynamics reveal that the soil under acacia allows the most rapid infiltration rate, which may be related to preferential flow. In the process of infiltration after a rainstorm, antecedent water still takes up over 30% of water in the topsoil. The soil water between depths of 0-115 cm under grass has a residence time of about 20 days in the rainy season. Groundwater recharge from precipitation mainly occurs in the rainy season, especially when rainstorms or successive heavy rain events happen.
Resumo:
In this paper a hydrodynamic approach is used to analyse carefully the flow field inChandler loop--the artificial thrombus formation. The results obtained show that near thelower meniscus where the thrombus is formed, there is a back flow accompanied with asecondary flow and its mainflow is toward the meniscus, thus providing a favourable condi-tion for corpuscle aggregation. Our finding is valuable for studying the mechanism ofthrombus formation in artificial organ and in vivo.
Resumo:
The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.
Resumo:
Gamma-ray irradiation induced color centers and charge state recharge of impurity and doped ion in 10 at.% Yb:YAP have been studied. The change in the additional absorption (AA) spectra is mainly related to the charge exchange of the impurity Fe2+, Fe3+ and Yb3+ ions. Two impurity color center bands at 255 and 313 nm were attributed to Fe3+ and Fe2+ ions, respectively. The broad AA band centered at 385 nm may be associated with the cation vacancies and F-type center. The transition Yb3+ -> Yb2+ takes place in the process of gamma-irradiation. Oxygen annealing and gamma-ray irradiation lead to an opposite effect on the absorption properties of the Yb:YAP crystal. In the air annealing process, the transition Fe2+ -> Fe3+ and Yb2+ -> Yb3+ take place and the color centers responsible for the 385 nm band was destroyed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The large-insert genomic DNA library is a critical resource for genome-wide genetic dissection of target species. We constructed a high-redundancy bacterial artificial chromosome (BAC) library of a New World monkey species, the black-handed spider monkey
Resumo:
We constructed a high redundancy bacterial artificial chromosome library of a seriously endangered Old World Monkey, the Yunnan snub-nosed monkey (Rhinopithecus bieti) from China. This library contains a total of 136 320 BAC clones. The average insert size of BAC clones was estimated to be 148 kb. The percentage of small inserts (50-100 kb) is 2.74%, and only 2.67% non-recombinant clones were observed. Assuming a similar genome size with closely related primate species, the Yunnan snub-nosed monkey BAC library has at least six times the genome coverage. By end sequencing of randomly selected BAC clones, we generated 201 sequence tags for the library. A total of 139 end-sequenced BAC clones were mapped onto the chromosomes of Yunnan snub-nosed monkey by fluorescence in-situ hybridization, demonstrating a high degree of synteny conservation between humans and Yunnan snub-nosed monkeys. Blast search against human genome showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the BAC library. This library and the mapped BAC clones will serve as a valuable resource in comparative genomics studies and large-scale genome sequencing of nonhuman primates. The DNA sequence data reported in this paper were deposited in GenBank and assigned the accession number CG891489-CG891703.
Resumo:
调查了人工湿地水生植物根区理化特性,根系扩展的深度和位置,微生物和酶的分布状况;比较了不同深度人工湿地污水净化效果;探讨了人工湿地污水处理系统最佳净化空间位点。通过对香蒲、灯心草人工湿地的研究,发现植物的根系主要分布在基质上层25cm区域内,在5到10cm区域内,微生物数量最多,25cm区域次之,35cm以下较少。系统表层磷酸酶,葡聚糖脱水酶和蛋白酶的活性较20cm区域内各酶活性强。对于废水的净化而言,系统20cm和60cm处的净化效果差别很小。结果表明,人工湿地废水处理系统上部区域为较佳净化空间。
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.
Resumo:
Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.
Resumo:
Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.