110 resultados para Archeology of al-Andalus
Resumo:
Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a summary of cellular and dendritic morphologies resulting from the upward directional solidification of Al - Ni alloys in a cylindrical crucible. We analysed the coupling of solid-liquid interface morphology with natural and forced convection. The influence of natural convection was first analyzed as a function of growth parameters (solute concentration, growth rate and thermal gradient). In a second step, the influence of axial vibrations on solidification microstructure was investigated by varying vibration parameters (amplitude and frequency). Experimental results were compared to preliminary numerical simulations and a good agreement is found for natural convection. In this study, the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure is pointed out.
Resumo:
We present numerical simulations of thermosolutal convection for directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al-7 wt% Si, but not in Al-3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of Al(PO3)(3) content on physical, chemical and optical properties of fluorophosphate glasses for 2 mu m application, such as thermal stability, chemical durability, surface hardness, absorption spectra and emission spectra, is investigated. With the increment of Al(PO3)(3) content, the thermal stability characterized by the gap of T-g and T,, increases first and then decreases, and reaches the maximum level containing 5 mol% Al(PO3)(3) content. The density and chemical durability decrease monotonously with the introduction of Al(PO3)(3) content increasing, while the refractive index and surface hardness increase. Above properties of fluorophosphate glasses are also compared with fluoride glasses and phosphate glasses. The Judd-Ofelt parameters, absorption and emission cross sections are discussed based on the absorption spectra of Tm-doped glasses. The emission spectra are also measured and the 1.8 mu m fluorescence of the sample is obvious indicating that it is suitable to 2 mu m application. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanocrystalline Zn0.95 - xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an auto-combustion method. X-ray diffraction measurements indicate that all Al-doped Zn0.95Ni0.05O samples have the pure wurtzite structure. Transmission electron microscope analyses show that the as-synthesized powders are of the size 40 - 45 nm. High-resolution transmission electron microscope, energy dispersive spectrometer and X-ray photoemission spectroscope analyses indicate that Ni2+ and Al3+ uniformly substitute Zn2+ in the wurtzite structure without forming any secondary phases. The Al doping concentration dependences of cell parameters (a and c), resistance and the ratio of green emission to UV emission have the similar trends. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Equilibrium geometries, stabilities, and electronic properties of TinAl (n=1-13) clusters have been studied by using density-functional theory with local spin density approximation and generalized gradient approximation. The ground-state structures of TinAl clusters have been obtained. The resulting geometries show that the aluminum atom remains on the surface of clusters for n<9, but is slowly getting trapped beyond n=9, meanwhile, the Al atom exhibits a valent transition from monovalent to trivalent. The geometric effects and electronic effects clearly demonstrate the Ti4Al cluster to be endowed with special stability. The studies on the bonds indicate the change from ionic to metalliclike. (C) 2004 American Institute of Physics.
Resumo:
For both, (Al,Ga)N with low Al content grown on a GaN nucleation layer and (AI,Ga)N with high Al content gown on an AlN nucleation layer, the inhomogeneous distribution of the luminescence is linked to the distribution of defects, which may be due to inversion domains. In the former system, defect regions exhibit a much lower Al content than the nominal one leading to a splitting of the respective luminescence spectra. In the latter system, a domain-like growth is observed with a pyramidal surface morphology and non-radiative recombination within the domain boundaries. (c) 2007 WILEYNCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The effect of Al incorporation on the AlGaN growth by metalorganic chemical vapor deposition is investigated. With the increase of trimethylalluminum (TMAl) flux, the crystal quality becomes worse, and the epilayer surface becomes rougher. An interesting phenomenon is that the growth rate of AlGaN decrease with increasing TMAl flux, which is opposite to the AlN growth rate dependence on the TMAl flux. All these effects are attributed to the different properties of At atoms due to the higher bond strength of Al-N compared with Ga-N, which lead to lower surface mobility and stronger competitive ability of Al atoms during the growth. The enhancement of the surface mobility of Al is especially important for improving the quality of AlGaN. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Improved electrical properties of AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures grown by metalorganic chemical vapor deposition (MOCVD) were achieved through increasing the Al mole fraction in the AlGaN barrier layers. An average sheet resistance of 326.6 Omega/sq and a good resistance uniformity of 98% were obtained for a 2-inch Al0.38Ga0 62N/GaN HEMT structure. The surface morphology of AlxGa1-xN/GaN HEMT structures strongly correlates with the Al content. More defects were formed with increasing Al content due to the increase of tensile strain, which limits further reduction of the sheet resistance. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.