24 resultados para Archaean seafloor
Resumo:
It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m-2 a-1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.
Resumo:
Peridotites from the southern Mariana forearc were sampled on the landward trench slope of the Izu-Bonin-Mariana (IBM) subduction zone by dredging. These mantle wedge peridotites underwent hydration by fluid derived from a dehydrated descending slab, and later interacted with seawater after emplacement at or near the seafloor. This study investigates how these two different rock-fluid interaction processes influenced trace element distribution in the southern Mariana forearc peridotites. We measured trace element concentrations of peridotites from the southern Mariana forearc. The southern Mariana forearc peridotites are characterized by a distinct seawater-like REE pattern with an obvious negative Ce anomaly, and La shows good correlation with other REEs (except Ce). In addition, there is a great enrichment of U, Pb, Sr and Li elements, which show a distinct positive anomaly relative to adjacent elements in the multi-element diagram. For the seawater-like REE pattern, we infer that REEs are mainly influenced by seawater during peridotite-seawater interactions after their emplacement at or near the seafloor, by serpentinization or by marine weathering. Furthermore, the anomalous behavior of Ce, compared with other rare earth elements in these samples, may indicate that they have undergone reactions involving Ce (IV) when the peridotites interacted with seawater. Positive U, Pb, Sr and Li anomalies are inferred to be related to seawater and/or fluids released during dehydration of the subducting slab.
Resumo:
Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.
Resumo:
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Resumo:
水合物成藏是一种动态演变过程,从生成和分解速度相对大小角度提出了天然气水合物的动态成藏理论;分析指出天然气水合物储层状态主要存在三种类型:成长型(包括渗透型与扩散型)、成熟型和消退型,必须结合经济型指标对这三种类型水合物藏进行开采可行性研究。 通过在自制的透明鼓泡反应釜内模拟气体迁移与水合物形成实验,解释了气体迁移对体系内传热与传质、溶解性质、过压等的影响因,进一步指出需要研究新的水合物相图。 从传热角度建立了水合物生长模型,计算并比较了南海北部陆坡琼东南盆地里甲烷水合物在渗漏系统和扩散系统下的生长速度,指出前者比后者快约20-40倍。 建立了水-气(游离气)-水合物-盐反应的多相流模型,演绎了在四个不同时刻随着水合物的形成,溶解度、渗透率、毛细压力、饱和度及盐度等的联动演变关系,并分析和比较了在沉积层水合物稳定区域内不同游离气饱和度和甲烷渗漏通量情况下水合物的形成过程和三种成藏类别。 反演了神狐海域水合物的形成,指出该区很可能是属于发育阶段的成长型渗漏系统水合物储藏,按照甲烷渗漏通量为0.5kg/m2·a计算,该地区已演化了约4800a,还需要约2700ka孔隙中水合物可到最大体积饱和度,达约75%,并在此后游离气将溢出沉积层进入海水中;计算得最终的甲烷水合物储量约为1.47×109m3,即该区最终将储存着约2200亿立方米甲烷气,是现在预测的约13倍!
Resumo:
化石燃料的燃烧是百余年来大气中二氧化碳(CO2)浓度增加的主要原因。CO2的收集和处置则是抑制这一趋势的有效途径。本文通过对现有收集利用和处置技术的分析,认为火电厂是收集CO2的重点考虑对象;CO2用于三次采油及天然气回收在技术上和经济上比较可行;蓄水层储气前景广阔值得研究;深海处置有待进一步探索;CO2用于置换开采天然气水合物也是很有前景的方案。
The burning of fossil fuel is the primary cause to have the concentration of carbon dioxide(CO2) in atmosphere increased during the past more than a hundred of years,and the capture and disposal of CO2 is an effective method to control its rising tendency.By analysis of the current capture and disposal technologies of CO2,it is concluded that firepower plants are the key targets to capture CO2.The paper also puts forth that tertiary oil recovery and natural gas recovery with CO2 are feasible both technologically and economically;storage of CO2 in saline aquifer is a method of nice foreground and deserves to be researched; disposal of CO2 in deep seafloor will be further investigated;and displacement of gas hydrate with CO2 is a tempting programme also.
Resumo:
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.
Resumo:
Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.
Resumo:
Hydrothermal fluid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep seawater hydrothermal activity, containing complex elements, cannot be used to study the seawater's contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig. 4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37 x 10(4) L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.
Resumo:
We report new geophysical and petrological data collected at the southern tip of the Parece Vela Basin in the Philippine Sea. The Parece Vela Basin, which was formed as a backarc basin behind proto Mariana arc-trench system from late Oligocene to middle Miocene, provides us a good opportunity to study the nature of successive backarc basin formations in the Philippine Sea and the relationship between are and backarc magmatisms. Regional bathymetric map derived from satellite altimetry shows that the southern tip of the basin, now located just west of the Yap arc-trench system, has unique morphological and tectonic features which include: 1) the absence of spreading center or its trace, 2) shallow average depth, and 3) enigmatic curved structures. Our newly collected high-resolution bathymetric data reveal that the spreading fabric similar to the central Parece Vela Basin exists to the north of 9 degrees 20'N. Thus it appears that the present-day Yap arc and backarc region represent the western half of the seafloor that was produced by the early E-W and the following NE-SW spreading in the northern and central Parece Vela Basin, and that the eastern counterpart now lies west of the West Mariana Ridge. Unlike the northern Parece Vela Basin, there appears to be no evidence for a systematic propagation of spreading center in the southern part. Instead two rift segments, one which extends from the central Parece Vela Basin and the other which lies within the western remnant arc (Kyushu-Palau Ridge), overlap at the southern tip of the basin, producing a complex seafloor that includes curvilinear deeps and deformed topographic highs. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from the Jade hydrothermal field in the central Okinawa Trough. Fluid-inclusion He-3/He-4 ratios are between 6.2 and 10.1 times the air value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [He-3/He-4 approximate to (6Rasimilar to 11Ra)]. Values for Ne-20/Ne-22 are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8). And the fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 334, which are close to the atmosperic values (295.5). These results indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- and seawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotope compositions are mainly from seawater.
Resumo:
Offshore active faults, especially those in the deep sea, are very difficult to study because of the water and sedimentary cover. To characterize the nature and geometry of offshore active faults, a combination of methods must be employed. Generally, seismic profiling is used to map these faults, but often only fault-related folds rather than fracture planes are imaged. Multi-beam swath bathymetry provides information on the structure and growth history of a fault because movements of an active fault are reflected in the bottom morphology. Submersible and deep-tow surveys allow direct observations of deformations on the seafloor (including fracture zones and microstructures). In the deep sea, linearly aligned cold seep communities provide indirect evidence for active faults and the spatial migration of their activities. The Western Sagami Bay fault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied in detail using the above methods. The bottom morphology, fractured breccias directly observed and photographed, seismic profiles, as well as distribution and migration of cold seep communities provide evidence for the nature and geometry of the fault. Focal mechanism solutions of selected earthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximum compression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating a left-lateral strike-slip fault.
Resumo:
Helium, rieon and argon isotope compositions of fluid inclusions have been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion He-3/He-4 ratios are 2.2-13.3 times the air value (Ra), and with a mean of 7.2 Ra. Comparison with the local vent fluids (He-3/He-4=7.5-8.2 Ra) and mid-ocean ridge basalt values (He-3/He-4=6-11 Ra) shows that the variation range of He-3/He-4 ratios from sulfide-hosted fluid inclusions is significantly large. Values for Ne-20/Ne-22 are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclusions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.
Resumo:
As the Okinawa Trough is a back-are basin in early spreading, modern submarine hydrothermal activity and minerallization have many characteristics which have aroused wide attention. Up to now three well-known hydrothermal venting areas are all located in the middle part of the trough, During two cruise investigations to map and sample the seafloor numbers of Calyptogena sp, shells were dredged at two sites in the northern trough with comparatively thicker crust and numerous submarine volcanoes. Based on the fact that Calyptogena sp, is only observed around the hydrothermal vents and lives on hydrothermal activities, it is predicted that there is the possibility of modern hydrothermal activities in the northern part of the trough. In this note, the shell is carefully characterized and the sample locations with possible hydrothermal activity are given. it Is pointed out that the research of biogenic fossils to trace hydrothermal activity changes in venting time, strength fluctuations, evolution In chemical compositions and so on should be stressed in the future in addition to the study of the ecological characteristics of hydrothermal organisms.
Resumo:
Processing of a recently acquired seismic line in the northeastern South China Sea by Project 973 has been conducted to study the character and the distribution of gas hydrate Bottom-Simulating Reflectors (BSRs) in the Hengchun ridge. Analysis of different-type seismic profiles shows that the distribution of BSRs can be revealed to some extents by single-channel profile in this area, but seismic data processing plays an important role to resolve the full distribution of BSRs in this area. BSR' s in the northeastern South China Sea have the typical characteristics of BSRs on worldwide continental margins: they cross sediment bed reflections, they are generally parallel to the seafloor and the associated reflections have strong amplitude and a negative polarity. The characteristics of BSRs in this area are obvious and the BSRs indicate the occurrence of gas hydrate-bearing sediments in the northeastern South China Sea. The depth of the base of the gas-hydrate stability zone was calculated using the phase stability boundary curve of methane hydrate and gas hydrate with mixture gas composition and compared with the observed BSR depth. If a single gradient geothermal curve is used for the calculation, the base of the stability zone for methane hydrate or gas hydrate with a gas mixture composition does not correspond to the depth of the BSRs observed along the whole seismic profile. The geothermal gradient therefore changes significantly along the profile. The geothermal gradient and heat flow were estimated from the BSR data and the calculations show that the geothermal gradient and heat flow decrease from west to east, with the increase of the distance from the trench and the decrease of the distance to the island arc. The calculated 2 heat flow changes from 28 to 64 mW/m(2), which is basically consistent with the measured heat flow in southwestern offshore Taiwan.