86 resultados para Arbitrary primers
Resumo:
Six sample specimens of Trachypithecus francoisi and 3 of T. leucocephalus were analyzed by use of allozyme electrophoresis and random amplified polymorphism DNA (RAPD) in order to clarify the challenged taxonomic status of the white-head langur. Among the 44 loci surveyed, only 1 locus (PGM-2) was found to be polymorphic. Nei's genetic distance was 0.0025. In total, thirty 10-mer arbitrary primers were used for RAPD analysis, of which 22 generated clear bands. Phylogenetic trees were constructed based on genetic distances using neighbor-joining and UPGMA methods. The results show that T. francoisi and T: leucocephalus are not monophyletic. T. francoisi from Guangxi, China and Vietnam could not be clearly distinguished, and they are not divided into 2 clusters. A t-test was performed to evaluate between genetic distances within and between T. leucocephalus and T. francoisi taxa groups. The statistical test shows that the taxa group within T: leucocephalus and T: francoisi does not significantly differ from that between T: leucocephalus and T: francoisi at the 5% level. Our results suggest that the level of genetic differentiation between T, leucocephalus and T. francoisi is relatively low. Recent gene flow might exist between T. francoisi and T. leucocephalus. Combining morphological features, geographical distribution, allozyme data, RAPD data, and mtDNA sequences, we suggest that the white-head langur might be a subspecies of T. francoisi.
Resumo:
Mature eggs of allotetraploid carp were activated by inactive sperm or crossed with normal sperms of common carp (Cyprinus carpio), crucian carp (Carassius auratus), Chinese blunt snout bream (Megalobrama amblycephala), Hemiculter leucisculus and Pseudorasbora parva. Chromosome counts showed that all offspring of these crosses presented a mode number of 200 chromosomes (4n = 200), and their morphological traits are much like maternal. Microsatelite marker and RAPD patterns between allotetraploid maternal and its offspring, reproduced from different paternal species, were identical. Cytological, morphological and molecular evidences suggested that allotetraploid carp female nucleus would not fuse with any male nucleus and its reproduction mode might be gynogenesis and therefore their offspring are retaining their tetraploidy and give origin to clonal individuals.
Resumo:
RAPD was used fur analysing three (sub-)species of mitten crabs (Eriocheir sinensis, E. japonicus, and E. japonicus hepuensis) and three populations of E. sinensis. The results show that their relationships on DNA level are similar to the classical taxonomic hypotheses (Dai, 1991). No diagnostic RAPD marker could be found, but there were statistically significant genetic differences among these taxa (P < 0.001) or populations (P < 0.001). That is, the intraspecific similarities were larger than the interspecific similarities; the intrasubspecific similarities were larger than the intraspecific similarities; and the intrapopulational similarities were larger than the interpopulational similarities. In AFLP analysis, no significant genetic difference has been found between E. sinensis and E. japonicus, but AFLP markers among four species of Macrobrachium (M. rosenbergii. M. nipponense, M. hainanense, and M. asperulum) were found. The DNA similarities among these four species of Macrobrachium are in accordance with morphological similarities.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and “hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.
Resumo:
In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.
Two-dimensional short surface-waves of an oscillating cylinder with arbitrary shape of cross-section
Resumo:
The 2-D short surface waves produced by a partially submerged cylinder which performsarbitrary oscillating motion are discussed. The uniformly valid solution which is applicableto all kinds of cylinder wall cases at waterline point is obtained. It is pointed out that thesolution obtained by Holford[J] for the vertical oscillating motion of a cylinder is incomplete.The reason why his solution cannot go over to that for the case of vertical cylinder wall atwaterline point is also pointed out.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. When the unloading rate is slow, a "hold" period between loading and unloading can be used to provide a correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and "hold-at-the-maximum-indenter-displacement" for determining the instantaneous modulus using spherical indenters.
Resumo:
Using the technique of stimulated Raman adiabatic passage, we propose schemes for creating arbi- trary coherent superposition states of atoms in four-level systems: a A-type system with twofold final states and a four-level ladder system. With the use of a control field, arbitrary coherent superposition states are created without the condition of multiphoton resonance. Suitable manipulation of detunings and the control field can create either a single state or any superposition states desired. (c) 2005 Pleiades Publishing, Inc.
Resumo:
We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.
Resumo:
The general formulation of double refraction or internal double reflection for any directions of incidence and arbitrary orientation of the optic axis in a uniaxial crystal is analysed in terms of Huygens' principle. Then double refraction and double reflection along the sequential interfaces in a crystal are discussed. On this basis, if the parameters of the interface are chosen appropriately, the range of angular separation between the ordinary ray and extraordinary ray can be much greater, It is useful for crystal element design. Finally, as an example, an optimum design of the Output end interface for a 2 x 2 electro-optic switch is given.
Resumo:
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.