527 resultados para Alumina Catalysts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of sulfided Ni or Co promoted Mo/alumina catalysts, having different Ni or Co loadings, were characterized by their activities for the transformation of cyclopentanone into cyclopentanethiol (flow reactor, 220 degrees C, atmospheric pressure) and for the hydrodesulfurization of dibenzothiophene (flow reactor, 340 degrees C, 3 MPa hydrogen pressure). The addition of the promoter increased significantly the activity of the Mo/alumina catalyst for both reactions, up to a maximum obtained with the catalysts having a (promoter)/(promoter+Mo) molar ratio equal to 0.3-0.4. This increase in activity was due in part to an increase in the hydrogenating properties of the Mo/alumina catalyst. However, an additional modification of the catalyst (basic and nucleophilic properties) must be considered to account for the spectacular effect of the promoter on the rate of the dibenzothiophene direct desulfurization reaction. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MoO3/Al2O3 is reduced at least partly by sulfur which is formed from H2S in sulfidation with H2S/N2 mixture. SO2 formation during TPD of MoO3/Al2O3 with presorbed H2S provides evidence for the explanation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfated alumina (SA) is firstly found to be an effective support for Pd catalyst used in the SCR of NO with methane. The sulfation is important to increase support's acidity which is essential for the reduction of NO over Pd catalysts. On consideration of the lower cost and easier availability of SA, we believe that SA is more promising to act as the commercial support for Pd catalyst used in the SCR of NO with methane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetralin hydrogenation (HYD) and thiophene hydrodesulfurization (HDS) were studied for the supported MoS2 and WS2 sulfides, either non-promoted or promoted with Co and Ni. The supports used were ZrO2, alumina-stabilized TiO2 and pure alumina. Preparation of catalysts included presulfidation of non-promoted system with subsequent addition of promoter and resulfidation. It has been found that the nature of promoter plays determining role for the catalytic performance. The most active in both HYD and HDS reactions are Ni-promoted Mo and W catalysts, supported on ZrO2. (C) 2003 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.