75 resultados para All terrain vehicles
Resumo:
提出全地形轮式移动机器人的正逆运动学问题。将机器人看成一个混合串-并联多刚体系统,从每个轮-地接触点到机器人车体分别构成一个串联子系统,抛弃车轮纯滚动假设,在轮-地接触点处建立瞬时坐标系,考虑车轮的平面滑移,从而对每个串联子系统形成一个封闭的速度链。对于每个速度闭链,可直接在驱动轮轮心处写出从机器人各驱动轮到机器人本体之间的运动方程,将每个速度闭链的运动方程合并即可得到机器人的整体运动学模型。以一个具有被动柔顺机构的六轮全地形移动机器人为对象进行推导,该方法既考虑了地形不平的影响,又考虑了车轮的前向、侧向及转向滑移,已知机构参数后就可以直接写出机器人的速度方程,且便于运动学求解。该方法对于轮式移动机器人的运动学建模具有一般性,且具有物理意义明确、推导过程简洁等特点。
Resumo:
研究全地形移动机器人在不平坦地形中轮-地几何接触角的实时估计问题.本文以带有被动柔顺机构的六轮全地形移动机器人为对象,抛弃轮-地接触点位于车轮支撑臂延长线上这一假设,通过定义轮-地几何接触角δ来反映轮-地接触点在轮缘上位置的变化和地形不平坦给机器人运动带来的影响,将机器人看成是一个串-并联多刚体系统,基于速度闭链理论建立考虑地形不平坦和车轮滑移的机器人运动学模型,并针对轮-地几何接触角δ难以直接测量的问题,提出一种基于模型的卡尔曼滤波实时估计方法.利用卡尔曼滤波对机器人内部传感器的测量值进行噪声处理,基于机器人整体运动学模型对各个轮-地几何接触角进行实时估计,物理实验数据的处理结果验证了本文方法的有效性,从而为机器人运动学的精确计算和高质量的导航控制奠定了基础.
Resumo:
本文主要针对复杂地形给移动机器人机动性和安全性所带来的相关问题,从机器人建模、轮—地接触模型、车轮滑移、牵引力控制及稳定性控制等方面,对全地形移动机器人建模与控制的相关研究进行了全面综述,并分析了国内外研究现状,特别是近年来所取得的最新成果.最后,指出了目前存在的问题及将来可能的发展趋势.
Resumo:
The rarefied gas effects on several configurations are investigated under hypersonic flow conditions using the direct simulation Mont Carlo method. It is found that the Knudsen number, the Mach number, and the angle of attack all play a mixed role in the aerodynamics of a flat plate. The ratio of lift to drag decreases as the Knudsen number increases. Studies on 3D delta wings show that the ratio of lift to drag could be increased by decreasing the wing thickness and/or by increasing the wing span. It is also found that the waveriders could produce larger ratio of lift to drag as compared with the delta wing having the same length, wing span, and cross section area.
Resumo:
The surface solar radiation (SSR) is of great importance to bio-chemical cycle and life activities. However, it is impossible to observe SSR directly over large areas especially for rugged surfaces such as the Qinghai-Tibet Plateau. This paper presented an improved parameterized model for predicting all-sky global solar radiation on rugged surfaces using Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products and Digital Elevation Model (DEM). The global solar radiation was validated using 11 observations within the plateau. The correlation coefficients of daily data vary between 0.67-0.86, while those of the averages of 10-day data are between 0.79-0.97. The model indicates that the attenuation of SSR is mainly caused by cloud under cloudy sky, and terrain is an important factor influencing SSR over rugged surfaces under clear sky. A positive relationship can also be inferred between the SSR and slope. Compared with horizontal surfaces, the south-facing slope receives more radiation, followed by the west- and east-facing slopes with less SSR, and the SSR of the north-facing slope is the least.
Resumo:
Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
The complete proof of the virial theorem in refined Thomas-Fermi-Dirac theory for all electrons of an atom in a solid is given.
Resumo:
Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and application of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized.
Resumo:
This paper appears to be the first where the multi-temperature shock slip-relations for the thermal and chemical nonequilibrium flows are derived. The derivation is based on analysis of the influences of thermal nonequilibrium and viscous effects on the mass, momentum and energy flux balance relations at the shock wave. When the relaxation times for all internal energy modes tend to sere, the multi-temperature shock slip-relations are converted into single-temperature ones for thermal equilibrium hows. The present results can be applied to flows over vehicles of different geometries with or without angles of attack. In addition, the present single-temperature shock slip-relations are compared with those in the literature, and Some defects and limitations in the latter are clarified.
Resumo:
High temperature chemical non-equilibrium phenomena have a great effect on the flow field around a reentry vehicle. A set of three dimensional Navier-Stokes equations have been solved by implicit finite volume NND scheme. Both ideal gas viscous flow and chemical non-equilibrium flow are calculated for a spherical-cone at a small angle of attack. The results of the two flows have been compared and the effect of chemical non-equilibrium has been analyzed. The effect of wall material's properties, such as catalysis and radiation were studied. The results are in good agreement with the referenced paper.
Resumo:
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4A degrees attack angle.
Resumo:
In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.
Resumo:
A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1 mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulse-width can be adjusted from 30 ns to 300 ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.
Resumo:
In this article, we report an all-fiber master oscillator power amplifier (MOPA) system, which can provide high repetition rate and nanosecond pulse with diffraction-limit. The system was constructed using a (2 + 1) X 1 multimode combiner. The Q-Switched, LD pumped Nd:YVO4 solid-state laser wets used (is master oscillator. The 976-nm fiber-coupled module is used as pump source. A 10-m long China-made Yb3+-doped D-shape double-clad large-mode-area fiber was used as amplifier fiber. The MOPA produced as much as 20-W average power with nanosecond pulse and near diffraction limited. The pulse duration is maintained at about 15 its during 50-175 kHz. The system employs a simple and compact architecture and is therefore suitable for the use in practical applications such as scientific and military airborne LIDAR and imaging. Based oil this system. the amplification performances of. the all fiber amplifier is investigated. (C) 2008 Wiley Periodicals, Inc.