125 resultados para Aeolian dust


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three eolian deposit formations, including Quaternary loess (QL, Liu et al.3 1985), Hipparion red earth (HRE, also called red clay, Liu et al., 1985) and Miocene loess (ML, Guo et al., 2002) constitute a set of unique paleoclimatic archives in northern China dated back to at least 22Ma ago. The Miocene loess is a recently discovered loess-soil sequence. Detailed investigation has been made on its origin, chronology and paleoclimatic significance (Guo et al., 2002), but further work is still needed to obtain detailed paleoclimate information, and mechanical links behind paleoclimatic changes. In this study, grain size analysis of QL, HRE and ML has been conducted on two sections: Qinan and Xifeng. The objective is focused on comparison of the grain size distribution characteristics (GSDC) among different eolian deposit formations, and reconstruction of the Asian monsoon circulation in the past 22 Ma. Results show that GDSC of ML resembles that of QL and HRE, and GDSC of ML is especially similar to HRE. Both ML and HRE contain a significant proportion of fine fraction, however, QL has a large amount of coarse sediments. This is mainly due to that the wind system transported aeolian dust was weaker in the late Tertiary than that in the Quaternary. Grain size difference between loess and paleosol in ML is much smaller than that in QL, indicating that the climatic fluctuations during the late Tertiary were much smaller than that happened in the Quaternary The grain size records of the past 22 Ma reveal several evolution phases of the Asia winter monsoon. -2.7 Ma BP is the most important boundary in the process of the winter monsoon evolution: the wind strength have significantly enhanced since 2.7 Ma ago. During a period between -22.0 and -3.6 Ma, three periods with relatively stronger winter monsoon are recorded in the QA-I section, between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 to 6.9 Ma, respectively. From 3.6 to 2.7, the winter monsoon was enhanced gradually. In the Miocene time, the intensified winter monsoon phases (between 21.2 and 19.9, and 16.0 and 13.3, and 8.7 and 6.9 Ma) seemed to have a close relationship with the uplift of the Tibetan Plateau and/or the ongoing global cooling, but the forcing mechanism behind the Asia winter monsoon evolution need to be further investigated. During the Pliocene-Pleistocene time, the Asia winter monsoon strengthened at 3.6 and 2.7Ma ago are in good agreement with the ongoing global cooling and the Arctic ice sheet development. In the mean time, much evidence suggests that an intense uplift of the Tibetan Plateau occurred at ~3.6 Ma, which is synchronous with a major increase in Asia winter monsoon. Therefore, two major factors may be invoked to explain the winter monsoon enhancement: Arctic ice sheet development and Tibetan uplift. We propose that changes in location and intensity of the Siberian-Mongolian high that were caused by the Tibetan uplift and Arctic ice sheet development might be an important factor for Asian winter monsoon evolution in the Pliocene-Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observation of the Miocene aeolian dust deposits in Qin'an area provide a long-timescale, almost continuous geological record for understanding significant environmental changes, such as the environmental evolution of Asian monsoons and the inland Asian aridification, and make possible new explorations of global and regional environmental evolutions and other relevant studies. However, the QA-I and QA-II sections that are previously investigated are near to each other, and there is a lack in understanding the spatial characteristics of changes in paleoenvironment. Therefore, new sections of Miocene aeolian dust deposits are needed to complete the present spatial framework. Meanwhile, it is necessary to carry out in-depth studies, which are already belated, on the depositional characteristics of these Miocene aeolian dust deposits.This thesis choose the Miziwan section and Shaogou section that are west to Liupan Mountain for magnetostratigraphic studies, results of which are compared with the QA-I section with respect to the lithology, magnetic susceptibility and paleomagnetic polarity stratigraphy. Quartz-fraction grain size of 300 samples from the QA-I section was analyzed. In addition, 30 out of these samples were determined in terms of the quartz morphological characteristics by using scanning electronic microscopy. On the basis of these data and the correlation with the Xifeng sequence of aeolian dust deposits, the following 3 conclusions are drawn as below:The upper and the lower boundary age of the Miziwan section are 11.6 Ma B.Rand 18.5 Ma B.R, respectively. The Shaogou section spans from 15.1 Ma B.P, to20.8 Ma B.R The lower boundary age of both sections is no older than that of theQA-I section. The Miziwan and the Shaogou sections can be well correlated withthe QA-I section in terms of the field lithological features, magnetic susceptibilityand magnetic polarity stratigraphy.Sedimentological evidence of the QA-I quartz grain size and quartz morphologicalcharacteristics further supports the previous conclusion that the QA-Iloess-paleosol sequence is of aeolian origin, and also verifies the accretionalfeatures in paleosols of this sequence in terms of the grain-size composition.Modifications of the grain-size composition of the original dusts due to later-stageweathering and pedogenesis are common characteristic of Miocene and Quaternary aeolian dust depositions. The above-mentioned processes further rework and refine the bulk grain size, which is more evident in paleosol layers. 3, Like the hipparion Red-Earth and the Quaternary aeolian deposits, the Miocene loess deposits are transported by near-ground winter monsoons. However, the average wind intensity evidenced by the quartz median grain size of Miocene loess, together with the maximum wind intensity by the quartz maximum grain size, is weaker than those of the Quaternary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to apply visualization methods to the experimental study of cornstarch dust-air mixture combustion in a closed vessel volume under microgravity conditions. A dispersion system with a small scale of turbulence was used in the experiments. A gas igniter initiated combustion of the dust-air mixture in the central or top part of the vessel. Flame propagation through the quiescent mixture was recorded by a high-speed video camera. Experiments showed a very irregular flame front and irregular distribution of the regions with local reactions of re-burning behind the flame front. at a later stage of combustion. Heat transfer from the hot combustion products to the walls is shown to have an important role in the combustion development. The maximum pressure and maximum rate of pressure rise were higher for flame propagation from the vessel center than for flame developed from the top pan of the vessel. The reason for smaller increase of the rate of pressure rise, for the flame developed from the top of the vessel. in comparison with that developed from the vessel center, was much faster increase of the contact surface of the combustion gases with the vessel walls. It was found that in dust flames only small part of hear was released at the flame front, the remaining part being released far behind it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of the present work is to report an experimental comparative study of the effect of dispersion-induced turbulence on dust combustion in constant volume vessel, carried out both in normal gravity and in microgravity environment. Dispersion system with small scale of turbulence, creating uniform homogeneous mixture, was used in experiments. To improve reproducibility of the explosion data an ignitor of small energy, with local soft ignition was developed. Both factors contributed to acquisition of more reproducible experimental data. In experiments under microgravity conditions a dust suspension during combustion remains constant. This makes possible to study dust explosion under stationary dust suspension without influence of turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

从稀相气固两相流理论出发,针对沙尘暴问题的特点,给出描述固相拟流体本构关系和气固相间相互作用的方法,探讨确定沙尘悬浮临界判据的途径,导出多场耦合下含尘大气运动的基本方程,从而可为定量预报沙尘暴系统结构特征和长距离输送传播提供理论基础。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new pneumatic dispersion system for obtaining a good quality uniform dust suspension in a horizontal dust combustion tube was developed. The effect of three different dispersion techniques on self-sustained dust flame acceleration in such a combustion tube was examined. The importance of the dispersion quality in the test tube for maintaining a self-sustained dust flame acceleration was demonstrated. A combustion tube for studies of flame acceleration in fine aluminum dust-air mixture and its transition to detonation under industrial ignition conditions was constructed in the course of the present study. It consists mainly of an initiation section and a test section. The initiation section must be equipped in a well-developed dispersion system for creating a good dispersion condition in the test tube. The length of this section is 3 meters. The test tube requires only to distribute uniformly the dust over the bottom of the tube prior to the experiment. The aluminum dust spherical in shape with 6 mu m in diameter was used for tests. Experimental results demonstrated that the increase in flame velocity is roughly linear through the entire length of the test tube. The highest flame propagation velocity in fine aluminum dust-air mixture approaches some 1200m/s at a distance of 4.8m from the ignition plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper investigates particle density pro les of a dust cloud induced by a normal shock wave moving at a constant speed along a at surface deposited with ne particles. In shock-fixxed coordinates, numerical simulation of ow structures of the carrier- and dispersed- phases was performed for the M = 2 case. The neness and non-uniformity of the particle size are taken into account and their effcts on the dust cloud are discussed in detail.