17 resultados para Activators appliances
Resumo:
Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.
Resumo:
An experimental study of the properties of hydrodynamic forces upon a marine pipeline is presented in this paper, in the equilibrium scour conditions for various Keulegan-Carpenter numbers and various initial relative gaps between pipeline and the erosive sandy seabed. The tests are conducted in a U-shaped oscillatory water tunnel with a sand box located at the bottom of the test section. According to the experimental results, the maximum horizontal forces on the pipelines with an initial gap to seabed will decrease to some extent due to scouring process. For engineering appliances, it seems safer to estimate wave induced forces on pipelines under the assumption that seabed is plane. However, it should be noticed that great changes would be brought to the frequency properties of lift forces because of the sandy scour beneath the pipeline, which occurs for certain KC numbers.
Resumo:
EU3+ -doped Y3Al5O12 (YAG:Eu3+) phosphors were synthesized by a facile sol-gel combustion method. In this process, citric acid traps the constituent cations and reduces the diffusion length of the precursors. YAG phase is obtained through sintering at 900 degrees C for 2h. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed. The charge transfer band of nanocrystalline phosphors shows a shift toward the high-energy side, compared with that of amorphous ones due to lower covalency of Eu-O bond for nanocrystalline phosphors. The higher concentration quenching in YAG:EU3+ nanophosphors may be caused by the confinement effect on resonant energy transfer of nanocrystalline. It also indicates that the sol-gel combustion synthesis method provides a good distribution of Eu3+ activators in YAG host. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-quality Ce3+-doped Y3Al5O12 (YAG:Ce3+) phosphors were synthesized by a facile sol-gel combustion method. In this sol-gel combustion process, citric acid acts as a fuel for combustion, traps the constituent cations and reduces the diffusion length of the precursors. The XRD and FT-IR results show that YAG phase can form through sintering at 900 degrees C for 2 h. This temperature is much lower than that required to synthesize YAG phase via the solid-state reaction method. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed in the sintering process. The average grain size of the phosphors sintered at 900-1100 degrees C is about 40 nm. With the increasing of sintering temperature, the emission intensity increases due to the improved crystalline and homogeneous distribution of Ce3+ ions. A blue shift has been observed in the Ce3+ emission spectrum of YAG:Ce3+ phosphors with increasing sintering temperatures from 900 to 1200 degrees C. It can be explained that the decrease of lattice constant affects the crystal field around Ce3+ ions. The emission intensity of 0.06Ce-doped YAG phosphors is much higher than that of the 0.04Ce and 0.02Ce ones. The red-shift at higher Ce3+ concentrations may be Ce-Ce interactions or variations in the unit cell parameters between YAG:Ce3+ and YAG. It can be concluded that the sol-gel combustion synthesis method provides a good distribution of Ce3+ activators at the molecular level in YAG matrix. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Y4Al2O9:EU3+ phosphor was synthesized through a sol-gel combustion method. The Y4Al2O9 phase can form through sintering at 800 degrees C. This temperature is much lower than that required via the solid state reaction method. The average grain size of the phosphor was about 30 run. Compared with the amorphous phosphor, the charge transfer band of crystalline phosphor shows a blue shift. The emission Of Y4Al2O9:Eu3+ indicates the existence of two luminescent centers, in agreement with the crystal structure of Y4Al2O9. Higher doping concentration could be realized in Y4Al2O9 nanocrystal host lattice. This indicates that the sol-gel combustion synthesis method can increase emission intensity and quenching concentration due to a good distribution of EU3+ activators in Y4Al2O9 host. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Y3Al5O12:Eu nanophosphors were synthesized by a gel combustion method. The structure of phosphors was characterized by XRD and FTIR. YAG phase came to occur when YAG:Eu precursors were sintered at 800 ℃, although the phase was mainly amorphous. The organ
Resumo:
The synthesis and optical properties of Y3Al5O12:Tb3+ phosphors are reported in this paper. Y3Al5O12:Tb3+ phosphors were synthesized by a facile solution combustion method. Citric acid traps the constituent cations and also acts as a fuel. Y3Al5O12 (YAG) phase can crystallize through sintering at 900 degrees C for 2 h, and there were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) in the sintering process. The excitation spectra of crystalline Y3Al5O12:Tb3+ are different from that of amorphous one due to the crystal field effect. The emission spectra mainly show D-5(4) -> F-7(6) transition under UV excitation. The higher concentration quenching in Y3Al5O12:Tb3+ nanophosphors may be due to the confinement effect on resonant energy transfer of nanocrystalline. It is also indicated that the solution combustion synthesis method provides a good distribution of Tb3+ activators in Y3Al5O12 host. (c) 2005 Published by Elsevier B.V.
Resumo:
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mel. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.
Resumo:
The action of Pallas' viper (Agkistrodon halys pallas) venom on blood coagulation was examined in vitro and a strong anticoagulant effect was observed. This action was abolished after treatment with a specific inhibitor of phospholipase A(2) activity (p-bromophenacyl bromide), revealing a procoagulant action in low concentrations of treated venom (around 1 mu g/ml). The effect of the venom an haemostasis was further characterized by measuring its ability to activate purified blood coagulation factors. It is concluded that A. halys pallas venom contains prothrombin activation activity. A prothrombin activator (aharin) was purified from the venom by Sephadex G-75 gel filtration and ion-exchange chromatography on a Mono-Q column. It consisted of a single polypeptide chain, with a mol. wt of 63,000. Purified aharin possessed no amidolytic activity on chromogenic substrates. It did not act on other blood coagulation factors, such as factor X and plasminogen, nor did it cleave or clot purified fibrinogen. The prothrombin activation activity of aharin was readily inhibited by ethylenediamine tetracetic acid (a metal chelator), but specific serine protease inhibitors such as diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride had no effect on it. These observations suggest that, like those prothrombin activators from Echis carinatus and Bothrops atrox venoms, the prothrombin activator from A. halys pallas venom is a metalloproteinase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Changes of plasminogen activators (PA) during different stages of development of the corpus luteum, and their possible physiological role in luteolysis were studied in rhesus monkeys. It was demonstrated for the first time that monkey corpus luteal cells not only produce PA, but that the function of the corpus luteum is also closely related to the activity of this enzyme system. Generally, the life span for a corpus luteum in monkey is approximately 14-16 days, its demise beginning thereafter. In the present study, we found that urokinase in the corpus luteum is higher on day 5 and day 10 after human chorionic gonadotrophin injection, while the tissue type (t) PA is mainly produced on day 13 when luteolysis may take place. Progesterone production remained high on day 5 and day 10 and decreased dramatically from day 13, indicating the important role of tPA but not urokinase (u) PA in suppressing luteal function. When purified tPA (but not uPA) monoclonal antibody was added to luteal cell culture to neutralize endogenously produced tPA activity, progesterone production in the cells was increased significantly. Interestingly, prolactin alone was capable of increasing PA production by luteal cells; prolactin together with luteinizing hormone, however, had a synergistic luteotrophic effect.
Resumo:
本文采用室内模拟培养试验和盆栽试验相结合的方法,以东北典型黑土、白浆土、棕壤和褐土为供试刘象,以还原型谷肤甘肤、ATP和辅酶I作为酶激活剂,研究了激活剂对土壤磷酸酶(磷酸单醋酶、磷酸二酷酶)活性的调节和对土壤有效磷含量的影响,以及对七壤有机磷生物有效性的作用,获得如下结果:1.还原型谷胧甘肤能显著提高供试土壤的磷酸单酷酶和磷酸二醋酶活性,而对土壤有效磷含量没有显著影响;ATP和辅酶I对不同土壤磷酸酶激活的效果不同,但均能显著提高土壤有效磷含量。2.在还原型谷肤甘肤、ATP和辅酶I作用下,土壤磷酸酶(单酷酶、二酷酶)Vmax值与对照相比均显著增大,表明激活剂是通过提高酶促反应速度达到激活效果的。三种激活剂对Km值的影响变化不一致,表明激活剂对不同土壤磷酸酶与底物的结合方式产生不同的影响。3,由60c。辐射灭菌试验,证明激活剂对不同种类的土壤磷酸酶作用方式不同:对土壤磷酸单醋酶的激活方式是以土壤微生物分泌的增殖酶增多为主,而对上壤磷酸二醋酶的激活方式则以土壤储积磷酸二醋酶活性的增加为主。4.小麦苗期盆栽试验结果表明,还原型谷胧甘肤对四类土壤磷酸酶(单醋酶、二醋酶)活性有很好的激活作用,而对盆栽土壤磷素含量及其小麦磷素吸收的影响却因不同土壤而表现出不同的作用,表明激活剂对土壤有机磷生物有效性的作用因土壤类型而不同。
Resumo:
In this paper, Y2O3 powder phosphors without metal activators were successfully prepared by the sol-gel method. The obtained sample shows an intense bluish-white emission (ranging from 350 to 600 nm, centered at 416 nm) under a wide range of UV light excitation (235-400 nm). The chromaticity coordinates of the sample are x = 0.159, y = 0.097, and the quantum yield is as high as 64.6%, which is a high value among the phosphor family without metal activators. The luminescent mechanisms have been ascribed to the carbon impurities in the Y2O3 host.
Resumo:
Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).
Resumo:
Y2(1-x) Gd2xSiWO8 : A ( 0 <= x <= 1; A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films have been prepared on silica glass substrates through the sol - gel dip-coating process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscope (AFM), scanning electron microscopy (SEM) and photoluminescence spectra as well as lifetimes were used to characterize the resulting films. The results of the XRD indicated that the films began to crystallize at 800 degrees C and crystallized completely at 1000 degrees C. The AFM and SEM study revealed that the phosphor films, which mainly consisted of closely packed grains with an average size of 90 - 120 nm with a thickness of 660 nm, were uniform and crack free. Owing to an efficient energy transfer from the WO42- groups to the activators, the doped lanthanide ion ( A) showed its characteristic f - f transition emissions in crystalline Y2(1-x) Gd2xSiWO8 (0 <= x <= 1) films. The optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined to be 21, 5, 3 and 7 mol% of Y3+ in Y2SiWO8 films, respectively.
Resumo:
Energy transfer phenomena have been observed by activating the oxyapatite host-lattice Ca2Gd8(SiO4)6O2 with Eu3+, Tb3+, Dy3+, Sm3+. This is based on the energy migration in the Gd3+ sublattice and trapping by the activators. The trapping efficiency for G