128 resultados para ASSEMBLY FACTOR ASF1
Resumo:
Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.
Resumo:
In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.
Resumo:
Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
<正> 1国际理论和应用力学联合会全代会的介绍 国际理论和应用力学联合会(IUTAM)全代会(Gen-eral Assembly)是全世界力学界的最高组织IUTAM的最高权力机构.全代会按照IUTAM诸参加国的等级(分5等)来划分代表名额.只有美国、日本等国由于交纳最高等级的会费而拥有5个代表名额,而我国在代表大会中有4位代表(郑哲敏,何友声,白以龙和杨卫).此外,在决策IUTAM
Resumo:
Based on the Mach-Zehnder effect between the core mode and the cladding modes, the interference fringes are formed by a pair of cascaded long-period fiber gratings (CLPFGs). Theoretical analyses show that the spectral spacing and the wavelength of these fringes are functions of the waveguide dispersion factor gamma, which is a characterizing parameter to LPFG and with theoretical and applicational significance. By measuring the characteristics of the transmission spectra of CLPFGs, the absolute value of gamma can be obtained. At the same time, the thermo-optic coefficient of effective refractive index difference between core and cladding modes, p, can also be obtained by measured the temperature sensitivity of these fringes. In the experiments, \gamma\ and mu were measured by this method to be 0.874 and 4.08 x 10(-5) degreesC(-1), respectively, for LPFGs with period of 450 mum and with a HE14 resonant peak at 1554 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown that the locus of the f' + if '' plot in the complex plane, f' being determined from measured f '' by using the dispersion relation, looks like a semicircle very near the absorption edge of Ge. The semicircular locus is derived from a quantum theory of X-ray resonant scattering when there is a sharp isolated peak in f '' just above the K-absorption edge. Using the semicircular behavior, an approach is proposed to determine the anomalous scattering factors in a crystal by fitting known calculated values based on an isolated-atom model to a semicircular focus. The determined anomalous scattering factors f' show excellent agreement with the measured values just below the absorption edge. In addition, the phase determination of a crystal structure factor has been considered by using the semicircular behavior.
Resumo:
The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.