210 resultados para AMAZON RIVER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The size structure of the planktonic community in a Changjiang floodplain lake (Lake Chenhu, Hubei, P. R. China) was described for the inundation period of May through September 1983. The modality of the Sheldon-type size distributions changed hydrographically with the spectral profiles being bimodal during low, rising, mid-high and falling water phases, and trimodal soon after filling and shortly before falling. The modal peaks corresponded respectively to the dominant organisms of chlorophytes and nauplii, while the troughs centered on the bacteria and macrocrustacean size classes in the lake. The slope of the normalized biomass spectrum (an index of plankton size distribution) was less than -1.0 for the filling and falling phases or close to -1.0 for the high water period, indicating that the planktonic biomass tended to decrease or evenly distributes across logarithmically ordered size classes, respectively. This observed variation in the size distribution of the plankton community mainly resulted from changes in water levels and contents of particulate inorganic matter (PIM) in the lake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative compositions of bacterioplankton, phytoplankton, zooplankton and detritus of seston were studied during the course of inundation in a floodplain lake of central Changjiang (China). Peaks in bacterial biomass developed shortly after flooding, coinciding with the initial leaching of organic nutrients from vegetation submerged under floodwater, and again at high water, shortly before the climax of phytoplankton biomass. Rods predominated the bacterial carbon biomass. Phytoplankton developed a postflood bloom at initial falling, corresponding to the drainage of the lake water into the river. While minimal biomass occurred during the advent of flooding, most likely due to disturbance and dilution. Algal biomass was usually dominated by Chlorophyta. Highest biomass of zooplankton was recorded at the end of the flooding in connection with the decline in turbidity, and once again at early drainage, closely associated with high phytoplankton biomass. Copepods (mainly nauplii) always constituted the majority of zooplankton carbon biomass. Peaks in detrital carbon concentrations were recorded at rising and falling water phases, corresponding respectively to the riverine discharge and decomposition of macrophyte mats. At rising water phase, CPOC was abundant. While during other water phases, this predominance was shifted to FPOC alone. Taken together, average contribution of bacterioplankton, phytoplankton, zooplankton and detritus to total seston carbon was 3.29, 21.21, 6.83 and 68.67 %, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram. and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28-33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol l(-1)). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration, U-234:U-238 activity ratio, phosphate (PO43-), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 10(5) mol yr(-1). A similarity between variations in dissolved U and PO43- with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO43- in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO43-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati

Relevância:

20.00% 20.00%

Publicador:

Resumo:

黄河下游花园口至夹河滩河段系典型的游荡型河段.在该河段,黄河大堤内范围宽广,一般洪水频率年份,水流主要限制在主槽内,因此大堤内分布有不少居民点以及纵横交错的保护居民点的生产堤和不少高于地面的灌溉渠堤和公路,使洪水行洪范围受到了很大的限制.当洪峰流量很大时,洪水将造成生产堤溃决,极大地危害滩区居民的生活.因此,设计模拟模型计算网格时需要考虑大堤、生产堤、明显高于地面的道路等阻水建筑物的影响,使这些堤及公路成为计算格网的边.不规则四边形网格能够很好地拟合黄河这种复杂的计算域.数值模拟时采用有限体积法,为确保通量的单向性,文中使用Osher格式计算通量.通过对1982年洪水的模拟,模拟结果表明了模型的合理性.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The middle reach of the Yangtze River, customarily called the Jingjiang River, together with its diversion channels and Dongting Lake, form a large complicated drainage system. In the last five decades, significant geomorphological changes have occurred in the drainage system, including the shrinkage of diversion channels, contraction of Dongting Lake, changes in the rating curve at the Luoshan station, and cutoffs of the lower Jingjiang River. These changes are believed to be the cause of the occurrence of abnormal floods in the Jingjiang River. Qualitative analyses suggest that the first three factors aggravate the flood situation in the lower Jingjiang River, while the last factor seems beneficial for flood prevention. To quantitatively evaluate these conclusions, a finite-volume numerical model was constructed. A series of numerical simulations were carried out to test the individual and combined effects of the aforementioned four factors, and these simulations showed that high flood stages in the Jingjiang River clearly are related to the geomorphological changes.