262 resultados para 2024 aluminum alloy
Resumo:
The age-strengthening 2024 aluminum alloy was modified by a combination of plasma-based ion implantation (PBII) and solution-aging treatments. The depth profiles of the implanted layer were investigated by X-ray photoelectron spectroscopy (XPS). The structure was studied by glancing angle X-ray diffraction (GXRD). The variation of microhardness with the indenting depth was measured by a nanoindenter. The wear test was carried on with a pin-on-disk wear tester. The results revealed that when the aluminum alloys were implanted with nitrogen at the solution temperature, then quenched in the vacuum chamber followed by an artificial aging treatment for an appropriate time, the amount of AIN precipitates by the combined treatment were more than that of the specimen implanted at ambient temperature. Optimum surface mechanical properties were obtained. The surface hardness was increased and the weight loss in a wear test decreased too.
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
The nanocrystal surface layer of an aluminum alloy induced by High Speed Shot Peening (HSSP) was investigated in this paper. The results of nanoindentation experiment show that the elastic modulus and the hardness of nanocrystal surface layer increased,by 8% and 20%, respectively. The elastic modulus and the hardness appear to be independent of the distance from nanocrystalized surface and the process time.
Resumo:
Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 mu m/min if the current density is 0.9 mA/mm(2). XRD results show that the PEO coatings are amorphous in the current density range of 0.3-0.9 mA/mm(2). EDS results show that the coatings are composed of O, Si and At elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.
Resumo:
对LY12铝合金在低周疲劳条件下的裂纹情况和随后进行的动态拉伸条件下裂纹的发展给予了观察和统计分析。发现裂纹的累积数密度分布在损伤演化过程中保持指数形式,用NAG模型对实验结果进行分析,得出该材料裂纹演化发展方程的各种参数。
Resumo:
Various Plasma Electrolytic Oxidation (PEO) ceramic coatings were prepared on LY12 aluminum alloy by adjusting the concentration of sodium silicate solution. Optical microscope (OM), XRD and EIS were used to study their morphology, composition and anti corrosion behavior in NaCl solution. Increasing concentration of sodium silicate leads to the increase of the total coating thickness while too high and too low concentration lead to the decrease of inner dense layer. The main composition of PEO coatings prepared in 20, 40 and above 60g/L concentration solution are correspondingly alumina, alumina with mullite, and amorphous phase. The corrosion resistance is determined by the inner dense layer. Increasing the thickness of inner dense layer can improve the anti-corrosion performance. PEO coating's corrosion resistance in acidic, alkaline and neutral NaCl solution is proved and the corrosion mechanism involved is also discussed.
Resumo:
This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.
Resumo:
A void growth relations for ductile porous materials under intense dynamic general loading condition is presented. The mathematical model includes the influence of inertial effects, material rate sensitivity, as well as the contribution of void surface energy and material work-hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated with a finite-difference dynamic code in which the theoretical model presented in this paper is incorporated.
Resumo:
In this paper, a damage function defined by the residual strength of spalled specimens of an aluminium alloy is given to characterize the spallation of the material. Based on this function a simple method for continuously describing the spallation may be developed. Stress wave profiles showing the signal of spallation were successfully obtained with carbon gauges. Microscopic observations of the spalled aluminium alloy specimens reveal that the nucleation of spallation initiates from cracking of the second phase particles. Spallation is a process of crack nucleation, growth and coalescence to final, complete disintegration.
Resumo:
Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.