16 resultados para wound dehiscence
em Cambridge University Engineering Department Publications Database
Resumo:
A number of biological processes, such as embryo development, cancer metastasis or wound healing, rely on cells moving in concert. The mechanisms leading to the emergence of coordinated motion remain however largely unexplored. Although biomolecular signalling is known to be involved in most occurrences of collective migration, the role of physical and mechanical interactions has only been recently investigated. In this paper, a versatile framework for cell motility is implemented in-silico in order to study the minimal requirements for the coordination of a group of epithelial cells. We find that cell motility and cell-cell mechanical interactions are sufficient to generate a broad array of behaviours commonly observed in vitro and in vivo. Cell streaming, sheet migration and susceptibility to leader cells are examples of behaviours spontaneously emerging from these simple assumptions, which might explain why collective effects are so ubiquitous in nature. This analysis provides also new insights into cancer metastasis and cell sorting, suggesting in particular that collective invasion might result from an emerging coordination in a system where single cells are mechanically unable to invade.
Resumo:
The Brushless Doubly-Fed Machine (BDFM) is attractive for use in wind turbines, especially offshore, as it offers high reliability by virtue of the absence of brushgear. Critical issues in the use of the BDFM in this role at a system level include the appropriate mode of operation, the sizing of associated converter and the control of the machine. At a machine level, the design of the machine and the determination of its ratings are important. Both system and machine issues are reviewed in the light of recent advances in the study of the BDFM, and preliminary comparisons are made with the well-established doubly fed wound rotor induction generator. © 2006 IEEE.
Resumo:
High Temperature superconductors are able to carry very high current densities, and thereby sustain very high magnetic fields. There are many projects which use the first property and these have concentrated on power generation, transmission and utilization, however there are relatively few which are currently exploiting the ability to sustain high magnetic fields. There are two main reasons for this: high field wound magnets can and have been made from both BSCCO and YBCO but currently their cost is much higher than the alternative provided by low Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form which can be magnetized to high fields and using flux pumping this can be done in situ. This paper explores some of the applications of bulk superconductors and describes methods of producing field patterns using the highly uniform magnetic fields required for MRI and accelerator magnets as the frame of reference. The patterns are not limited to uniform fields and it is entirely possible to produce a field varying sinusoidally in space such as would be required for a motor or a generator. The scheme described in this paper describes a dipole magnet such as is found in an accelerator magnet. The tunnel is 30 × 50 × 1000 mm and we achieve a uniformity of better than 200 ppm over the 1000 mm length and better than 1 ppm over the central 500 mm region. The paper presents results for both the overall uniformity and the integrated uniformity which is 302 ppm over the 1000 mm length. © 2010 IEEE.
Resumo:
In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.
Resumo:
The brushless doubly fed machine (BDFM) is a robust alternative to the doubly fed induction generator (DFIG) which is widely used in wind turbines but suffers from failures associated with its brushes and sliprings. The rotor plays an important part in a BDFM, coupling the two stator fields. To date, the nested loop has been almost exclusively used in modern BDFMs, but this approach is not ideally suited to large machines in which a form wound rotor is likely to be preferable from a manufacturing point of view. This paper gives a comparative study of two rotor windings. The performance of the rotors has been predicted from theory for a frame size 160 BDFM. Actual rotors have been built, using identical rotor laminations, and tested, giving results which accord well with predictions. The results give insight into the design issues of rotors both from electrical and manufacturing viewpoints. ©2010 IEEE.
Resumo:
Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.
Resumo:
This paper begins with introducing the winding techniques of two superconducting double-pancake coils wound using 2G coated conductors. These winding techniques are able to guarantee a good performance for the superconducting coils. Then the coil critical currents were measured and compared with a simulation model. The results were consistent. Finally the coil AC losses were measured using an experimental circuit including a compensation coil. The simulation results are close to the experiment results. © 2010 IEEE.
Resumo:
As a variation of the thermally actuated flux pump and the linear type magnetic flux pump (LTMFP), the circular type magnetic flux pump (CTMFP) device is proposed to magnetize a circular shape type-II superconducting thin film and bulk. The basic concept is the same as the thermally actuated flux pump: a circularly symmetric traveling magnetic field is generated below a circular shape superconductor to increase its trapping field. However, this traveling field is created by the three phase windings instead of heating gadolinium block. Apart from the LTMFP, the three phase windings are wound concentrically instead of linearly. The speed of the traveling field is controlled by the AC frequency and the magnitude of the field is controlled by the magnitudes of AC currents. In addition, a coil with DC current is wound around the three phase windings to provide a background field. The concept design is presented in this paper. The magnetic waveforms are analysed numerically by the COMSOL 3.5a software. The impedances of the three phase windings are calculated and a corresponding circuit design is presented. This rig can be used as an advanced tool to study the flux pump behavior of a circular shape superconductor. © 2002-2011 IEEE.
Resumo:
Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.
Resumo:
This paper presents a comparative study of ac magnetization losses in two types of 2 G HTS racetrack coils. The magnetic substrate made by RABiTS is the main difference between the two types, because ferromagnetic loss caused by magnetic substrate is accounted into the total ac losses. IBAD and RABiTS tapes were successfully wound into racetrack shape with identical geometry. The measurements were carried out by using electromagnetic method with pick-up coils under a sinusoidally varying external magnetic field, with amplitudes up to 27 mT, ranging from 10 Hz to 100 Hz at a temperature of 77 K. The field was oriented perpendicularly to the surface of the tapes. Experimental measurements were validated by applying theoretical models and the results showed that the magnetization loss in the MAG RABiTS coil is always higher than that in the NON MAG coil due to the presence of the magnetic substrate, which increases the magnetic field penetration into the coil and causes higher magnetic flux density within the penetrated region. © 2002-2011 IEEE.
Resumo:
A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a pancake coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 νV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s. © 2006 IOP Publishing Ltd.
Resumo:
As the intelligence and the functionality of microrobots increase, there is a growing need to incorporate sensors into these robots. In order to limit the outer dimensions of these microsystems, this research investigates sensors that can be integrated efficiently into microactuators. Here, a pneumatic piston-cylinder microactuator with an integrated inductive position sensor was developed. The main advantage of pneumatic actuators is their high force and power density at microscale. The outside diameter of the actuator is 1.3 mm and the length is 15 mm. The stroke of the actuator is 12 mm, and the actuation force is 1 N at a supply pressure of 1.5 MPa. The position sensor consists of two coils wound around the cylinder of the actuator. The measurement principle is based on the change in coupling factor between the coils as the piston moves in the actuator. The sensor is extremely small since one layer of 25 μm copper wire is sufficient to achieve an accuracy of 10 μm over the total stroke. Position tests with a PI controller and a sliding mode controller showed that the actuator is able to position with an accuracy up to 30 μm. Such positioning systems offer great opportunities for all devices that need to control a large number of degrees of freedom in a restricted volume. © 2007 Elsevier B.V. All rights reserved.
Resumo:
High temperature superconducting (HTS) synchronous motors can offer significant weight and size reductions, as well as improved efficiency, over conventional copper-wound machines due to the higher current density of high temperature superconducting (HTS) materials. In order to optimise the design parameters and performance of such a machine, this paper proposes a basic physical model of an air-cored HTS synchronous motor with a copper armature winding and HTS field winding. An analytical method for the field analysis in the synchronous motor is then presented, followed by a numerical finite element analysis (FEA) model to verify the analytical solution. The model is utilised to study the influence of the geometry of the HTS coils on the magnetic field at the armature winding, and geometrical parameter optimisation is carried out using this theoretical model to obtain a more sinusoidal magnetic field at the armature, which has a major influence on the performance of the motor.
Resumo:
Pancake or racetrack coils wound with second generation high-temperature superconductors (2G HTSs) are important elements for numerous applications of HTS. The applications of these coils are primarily in rotating machines such as motors and generators where they must withstand external magnetic fields from various orientations. The characterization of 2G HTS coils is mostly focused on AC loss assessment, critical current and maximum magnetic field evaluation. In this study, racetrack coils will be placed in different orientations of external magnetic fields - Jc (Ic) versus angle measurements will be performed and interpreted. Full attention is paid to studies of anisotropy Jc versus angle curves for short samples of 2G HTS tapes. As will be shown, the shape of the Jc versus angle curves for tapes has a strong influence on the Jc (Ic) versus angle curves for coils. In this work, a unique and unpredicted behavior of the Jc versus angle curves for the 2G HTS racetrack coils was found. This will be analyzed and fully explained. © 2013 IOP Publishing Ltd.