5 resultados para work climate

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the current state-of-the-art in performance indicators and use of probabilistic approaches used in climate change impact studies. It presents a critical review of recent publications in this field, focussing on (1) metrics for energy use for heating and cooling, emissions, overheating and high-level performance aspects, and (2) uptake of uncertainty and risk analysis. This is followed by a case study, which is used to explore some of the contextual issues around the broader uptake of climate change impact studies in practice. The work concludes that probabilistic predictions of the impact of climate change are feasible, but only based on strict and explicitly stated assumptions. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is expected to have significant impact on the future thermal performance of buildings. Building simulation and sensitivity analysis can be employed to predict these impacts, guiding interventions to adapt buildings to future conditions. This article explores the use of simulation to study the impact of climate change on a theoretical office building in the UK, employing a probabilistic approach. The work studies (1) appropriate performance metrics and underlying modelling assumptions, (2) sensitivity of computational results to identify key design parameters and (3) the impact of zonal resolution. The conclusions highlight the importance of assumptions in the field of electricity conversion factors, proper management of internal heat gains, and the need to use an appropriately detailed zonal resolution. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a potential poverty reduction and climate change strategy, this paper considers the advantages and disadvantages of using renewable energy technologies for rural electrification in developing countries. Although each case must be considered independently, given a reliable fuel source, renewable energy mini-grids powered by biomass gasifiers or micro-hydro plants appear to be the favoured option due to their lower levelised costs, provision of AC power, potential to provide a 24. h service and ability to host larger capacity systems that can power a wide range of electricity uses. Sustainability indicators are applied to three case studies in order to explore the extent to which sustainable welfare benefits can be created by renewable energy mini-grids. Policy work should focus on raising awareness about renewable energy mini-grids, improving institutional, technical and regulatory frameworks and developing innovative financing mechanisms to encourage private sector investments. Establishing joint technology and community engagement training centres should also be encouraged. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on research that uses building performance simulation and uncertainty analysis to assess the risks that projected climate change poses to the thermal performance of buildings, and to their critical functions. The work takes meteorological climate change predictions as a starting point, but also takes into account developments and uncertainties in technology, occupancy, intervention and renovation, and others. Four cases are studied in depth to explore the prospects of the quantification of said climate change risks. The research concludes that quantification of the risks posed by climate change is possible, but only with many restrictive assumptions on the input side.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.