85 resultados para word decoding
em Cambridge University Engineering Department Publications Database
Resumo:
State-of-the-art speech recognisers are usually based on hidden Markov models (HMMs). They model a hidden symbol sequence with a Markov process, with the observations independent given that sequence. These assumptions yield efficient algorithms, but limit the power of the model. An alternative model that allows a wide range of features, including word- and phone-level features, is a log-linear model. To handle, for example, word-level variable-length features, the original feature vectors must be segmented into words. Thus, decoding must find the optimal combination of segmentation of the utterance into words and word sequence. Features must therefore be extracted for each possible segment of audio. For many types of features, this becomes slow. In this paper, long-span features are derived from the likelihoods of word HMMs. Derivatives of the log-likelihoods, which break the Markov assumption, are appended. Previously, decoding with this model took cubic time in the length of the sequence, and longer for higher-order derivatives. This paper shows how to decode in quadratic time. © 2013 IEEE.
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
This paper discusses the Cambridge University HTK (CU-HTK) system for the automatic transcription of conversational telephone speech. A detailed discussion of the most important techniques in front-end processing, acoustic modeling and model training, language and pronunciation modeling are presented. These include the use of conversation side based cepstral normalization, vocal tract length normalization, heteroscedastic linear discriminant analysis for feature projection, minimum phone error training and speaker adaptive training, lattice-based model adaptation, confusion network based decoding and confidence score estimation, pronunciation selection, language model interpolation, and class based language models. The transcription system developed for participation in the 2002 NIST Rich Transcription evaluations of English conversational telephone speech data is presented in detail. In this evaluation the CU-HTK system gave an overall word error rate of 23.9%, which was the best performance by a statistically significant margin. Further details on the derivation of faster systems with moderate performance degradation are discussed in the context of the 2002 CU-HTK 10 × RT conversational speech transcription system. © 2005 IEEE.