180 resultados para wavelength tunable

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We passively modelock an optically pumped VECSEL by using a single-layer graphene saturable absorber mirror, resulting in pulses as short as 473 fs. A broad wavelength tuning range of 46 nm is achieved with three different VECSEL chips, with a single chip 21 nm are covered. © OSA 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-organization of the helical structure of chiral nematic liquid crystals combined with their sensitivity to electric fields makes them particularly interesting for low-threshold, wavelength tunable laser devices. We have studied these organic lasers in detail, ranging from the influence specific macroscopic properties, such as birefringence and order parameter, have on the output characteristics, to practical systems in the form of two-dimensional arrays, double-pass geometries and paintable lasers. Furthermore, even though chiral nematics are responsive to electric fields there is no facile means by which the helix periodicity can be adjusted, thereby allowing laser wavelength tuning, without adversely affecting the optical quality of the resonator. Therefore, in addition to studying the liquid crystal lasers, we have focused on finding a novel method with which to alter the periodicity of a chiral nematic using electric fields without inducing defects and degrading the optical quality factor of the resonator. This paper presents an overview of our research, describing (i) the correlation between laser output and material properties,(ii) the importance of the gain medium,(iii) multicolor laser arrays, and (iv) high slope efficiency (>60%) silicon back-plane devices. Overall we conclude that these materials have great potential for use in versatile organic laser systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade, passively modelocked optically pumped vertical external cavity surface emitting lasers (OPVECSELs), sometimes referred to as semiconductor disk lasers (OP-SDLs), impressively demonstrated the potential for generating femtosecond pulses at multi-Watt average output powers with gigahertz repetition rates. Passive modelocking with a semiconductor saturable absorber mirror (SESAM) is well established and offers many advantages such as a flexible design of the parameters and low non-saturable losses. Recently, graphene has emerged as an attractive wavelength-independent alternative saturable absorber for passive modelocking in various lasers such as fiber or solid-state bulk lasers because of its unique optical properties. Here, we present and discuss the modelocked VECSELs using graphene saturable absorbers. The broadband absorption due to the linear dispersion of the Dirac electrons in graphene makes this absorber interesting for wavelength tunable ultrafast VECSELs. Such widely tunable modelocked sources are in particularly interesting for bio-medical imaging applications. We present a straightforward approach to design the optical properties of single layer graphene saturable absorber mirrors (GSAMs) suitable for passive modelocking of VECSELs. We demonstrate sub-500 fs pulses from a GSAM modelocked VECSEL. The potential for broadband wavelength tuning is confirmed by covering 46 nm in modelocked operation using three different VECSEL chips and up to 21 nm tuning in pulsed operation is achieved with one single gain chip. A linear and nonlinear optical characterization of different GSAMs with different absorption properties is discussed and can be compared to SESAMs. © 2014 SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is shown for the first time that uncooled tunable DBR-laser diodes can be used as athermal WDM sources. Using novel bias current control, absolute wavelength control to within 6Å has been achieved for temperatures up to 70°C. © 2000 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present for the first time a comprehensive study of the static and dynamic properties of a coolerless tunable three-section DBR laser. Wavelength tuning and thermal drift under uncooled conditions are investigated. Variance of modulation bandwidth with temperature rise and wavelength control is studied, and then verified by uncooled direct modulation performance with clear open eye diagrams. Satisfactory direct modulation is demonstrated at bit rate of up to 6Gbit/s, which is believed to be the fastest out of devices of similar structure so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we report a low-threshold organic laser device based on semiconducting poly(9, 9′ -dioctylfluoren-2,7-diyl-alt-benzothiadiazole) (F8BT) encapsulated in a mechanically stretchable polydimethylsiloxane (PDMS) matrix. We take advantage of the natural flexibility of PDMS to alter the periodicity of the distributed feedback grating which in turn tunes the gain wavelength at which the resonant feedback is obtained. This way, we demonstrate that low-threshold lasing [6.1 μJ cm-2 (5.3 nJ)] is maintained over a large stretching range of 0%-7% which translates into a tuning range of about 20 nm. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Employing a nanotube-based saturable absorber, we demonstrate a continuously tunable (1533-1563nm) ultrafast fiber laser, with output pulsewidth switchable between picosecond (1.2 ps) and femtosecond (610 fs) regimes. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate automatic operation of a cooler-less tunable-laser based WDM-PON system. Using a pilot-tone based overhead channel and centralized wavelength locking scheme, 1 Gb/s and 10 Gb/s data transmission is demonstrated in a multi-user set-up. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first demonstration of continuous-wave operation of a tunable, compact microring laser array based on a vertical-coupling architecture, well suited to larger-scale integration. Wavelength separation tunability from 4.9 to 6.3nm is observed. © 2006 Optical Society of America.