88 resultados para vortex-antivortex pair
em Cambridge University Engineering Department Publications Database
Resumo:
The imminent inability of silicon-based memory devices to satisfy Moore's Law is approaching rapidly. Controllable nanodomains of ferroic systems are anticipated to enable future high-density nonvolatile memory and novel electronic devices. We find via piezoresponse force microscopy (PFM) studies on lead zirconate titanate (PZT) films an unexpected nanostructuring of ferroelectric-ferroelastic domains. These consist of c-nanodomains within a-nanodomains in proximity to a-nanodomains within c-domains. These structures are created and annihilated as pairs, controllably. We treat these as a new kind of vertex-antivertex pair and consider them in terms of the Srolovitz-Scott 4-state Potts model, which results in pairwise domain vertex instabilities that resemble the vortex-antivortex mechanism in ferromagnetism, as well as dislocation pairs (or disclination pairs) that are well-known in nematic liquid crystals. Finally, we show that these nanopairs can be scaled up to form arrays that are engineered at will, paving the way toward facilitating them to real technologies.
Resumo:
In technological superconductors, the Lorentz force on the flux vortices is opposed by inhomogeneous pinning and so the critical current may be controlled by a combination of vortex entanglement, cutting, and cross-joining. To understand the roles of these processes we report measurements of structures in which a weak pinning layer is sandwiched between two strongly pinning leads. Quantitative modeling of the results demonstrates that in such systems the critical current is limited by the deformation of individual vortices and not by subsequent cross-joining processes.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2010 by Sang Lee.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2011 Elsevier Ltd.