11 resultados para void number density

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the formation of soot in a Direct Injection Spark Ignition (DISI) engine is simulated using the Stochastic Reactor Model (SRM) engine code. Volume change, convective heat transfer, turbulent mixing, direct injection and flame propagation are accounted for. In order to simulate flame propagation, the cylinder is divided into an unburned, entrained and burned zone, with the rate of entrainment being governed by empirical equations but combustion modelled with chemical kinetics. The model contains a detailed chemical mechanism as well as a highly detailed soot formation model, however computation times are relatively short. The soot model provides information on the morphology and chemical composition of soot aggregates along with bulk quantities, including soot mass, number density, volume fraction and surface area. The model is first calibrated by simulating experimental data from a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. The model is then used to simulate experimental data from the literature, where the numbers, sizes and derived mass particulate emissions from a 1.83 L, 4-cylinder, 4 valve production DISI engine were examined. Experimental results from different injection and spark timings are compared with the model and the qualitative trends in aggregate size distribution and emissions match the exhaust gas measurements well. © 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of algebraic flame surface density (FSD) models has been assessed for flames with nonunity Lewis number (Le) in the thin reaction zones regime, using a direct numerical simulation (DNS) database of freely propagating turbulent premixed flames with Le ranging from 0.34 to 1.2. The focus is on algebraic FSD models based on a power-law approach, and the effects of Lewis number on the fractal dimension D and inner cut-off scale η i have been studied in detail. It has been found that D is strongly affected by Lewis number and increases significantly with decreasing Le. By contrast, η i remains close to the laminar flame thermal thickness for all values of Le considered here. A parameterisation of D is proposed such that the effects of Lewis number are explicitly accounted for. The new parameterisation is used to propose a new algebraic model for FSD. The performance of the new model is assessed with respect to results for the generalised FSD obtained from explicitly LES-filtered DNS data. It has been found that the performance of the most existing models deteriorates with decreasing Lewis number, while the newly proposed model is found to perform as well or better than the most existing algebraic models for FSD. © 2012 Mohit Katragadda et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Ret has been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Ret and Ka before reaching an asymptotic value for large values of Ret and Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel'dovich flame thickness ηi/δz does not exhibit any significant dependence on Ret for the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width. © 2012 Mohit Katragadda et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a derivation of the adjoint low Mach number equations and their implementation and validation within a global mode solver. The advantage of using the low Mach number equations and their adjoints is that they are appropriate for flows with variable density, such as flames, but do not require resolution of acoustic waves. Two versions of the adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The most unstable global mode calculated with the discrete-adjoint has exactly the same eigenvalue as the corresponding direct global mode but contains numerical artifacts near the inlet. The most unstable global mode calculated with the continuous-adjoint has no numerical artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually converges more quickly than the discrete-adjoint but is more challenging to implement. Finally, the direct and adjoint global modes are combined in order to calculate the wavemaker region of a low density jet. © 2011 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.