26 resultados para voice acoustic analysis

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contra-rotating open rotor is, once again, being considered as an alternative to the advanced turbofan to address the growing pressure to cut aviation fuel consumption and carbon dioxide emissions. One of the key challenges is meeting community noise targets at takeoff. Previous open rotor designs are subject to poor efficiency at takeoff due to the presence of large regions of separated flow on the blades as a result of the high incidence needed to achieve the required thrust. This is a consequence of the fixed rotor rotational speed constraint typical of variable pitch propellers. Within the study described in this paper, an improved operation is proposed to improve performance and reduce rotorrotor interaction noise at takeoff. Three-dimensional computational fluid dynamics (CFD) calculations have been performed on an open rotor rig at a range of takeoff operating conditions. These have been complemented by analytical tone noise predictions to quantify the noise benefits of the approach. The results presented show that for a given thrust, a combination of reduced rotor pitch and increased rotor rotational speed can be used to reduce the incidence onto the front rotor blades. This is shown to eliminate regions of flow separation, reduce the front rotor tip loss and reduce the downstream stream tube contraction. The wakes from the front rotor are also made wider with lower velocity defect, which is found to lead to reduced interaction tone noise. Unfortunately, the necessary increase in blade speed leads to higher relative Mach numbers, which can increase rotor alone noise. In summary, the combined CFD and aero-acoustic analysis in this paper shows how careful operation of an open rotor at takeoff, with moderate levels of re-pitch and speed increase, can lead to improved front rotor efficiency as well as appreciably lower overall noise across all directivities. Copyright © 2011 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system: a Rijke tube containing a hot wire. We calculate how the growth rate and frequency of small oscillations about a base state are affected either by a generic passive control element in the system (the structural sensitivity analysis) or by a generic change to its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity by calculating the effect of a second hot wire with a small heat-release parameter. In a single calculation, this shows how the second hot wire changes the growth rate and frequency of the small oscillations, as a function of its position in the tube. We then examine the components of the structural sensitivity in order to determine the passive control mechanism that has the strongest influence on the growth rate. We find that a force applied to the acoustic momentum equation in the opposite direction to the instantaneous velocity is the most stabilizing feedback mechanism. We also find that its effect is maximized when it is placed at the downstream end of the tube. This feedback mechanism could be supplied, for example, by an adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of small variations in the damping factor, the heat-release time-delay coefficient, the heat-release parameter, and the hot-wire location. The successful application of sensitivity analysis to thermo-acoustics opens up new possibilities for the passive control of thermo-acoustic oscillations by providing gradient information that can be combined with constrained optimization algorithms in order to reduce linear growth rates. © Cambridge University Press 2013.