4 resultados para virtual work
em Cambridge University Engineering Department Publications Database
Resumo:
Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.
Resumo:
Recent research into the acquisition of spoken language has stressed the importance of learning through embodied linguistic interaction with caregivers rather than through passive observation. However the necessity of interaction makes experimental work into the simulation of infant speech acquisition difficult because of the technical complexity of building real-time embodied systems. In this paper we present KLAIR: a software toolkit for building simulations of spoken language acquisition through interactions with a virtual infant. The main part of KLAIR is a sensori-motor server that supplies a client machine learning application with a virtual infant on screen that can see, hear and speak. By encapsulating the real-time complexities of audio and video processing within a server that will run on a modern PC, we hope that KLAIR will encourage and facilitate more experimental research into spoken language acquisition through interaction. Copyright © 2009 ISCA.
Resumo:
In the context of collaborative product development, new requirements need to be accommodated for Virtual Prototyping Simulation (VPS), such as distributed processing and the integration of models created using different tools or languages. Existing solutions focus mainly on the implementation of distributed processing, but this paper explores the issues of combining different models (some of which may be proprietary) developed in different software environments. In this paper, we discuss several approaches for developing VPS, and suggest how it can best be integrated into the design process. An approach is developed to improve collaborative work in a VPS development by combining disparate computational models. Specifically, a system framework is proposed to separate the system-level modeling from the computational infrastructure. The implementation of a simple prototype demonstrates that such a paradigm is viable and thus provides a new means for distributed VPS development. © 2009 by ASME.